
First Order Model-Based RL
through Decoupled Backpropagation

Joseph Amigo∗12, Rooholla Khorrambakht1,
Elliot Chane-Sane2, Nicolas Mansard23, Ludovic Righetti13
1Machines in Motion Laboratory, New York University, USA

2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
3Artificial and Natural Intelligence Toulouse Institute, Toulouse, France

https://machines-in-motion.github.io/DMO/

Abstract: There is growing interest in reinforcement learning (RL) methods that
leverage the simulator’s derivatives to improve learning efficiency. While early
gradient-based approaches have demonstrated superior performance compared to
derivative-free methods, accessing simulator gradients is often impractical due to
their implementation cost or unavailability. Model-based RL (MBRL) can ap-
proximate these gradients via learned dynamics models, but the solver efficiency
suffers from compounding prediction errors during training rollouts, which can
degrade policy performance. We propose an approach that decouples trajectory
generation from gradient computation: trajectories are unrolled using a simulator,
while gradients are computed via backpropagation through a learned differentiable
model of the simulator. This hybrid design enables efficient and consistent first-
order policy optimization, even when simulator gradients are unavailable, as well
as learning a critic from simulation rollouts, which is more accurate. Our method
achieves the sample efficiency and speed of specialized optimizers such as SHAC,
while maintaining the generality of standard approaches like PPO and avoiding ill
behaviors observed in other first-order MBRL methods. We empirically validate
our algorithm on benchmark control tasks and demonstrate its effectiveness on a
real Go2 quadruped robot, across both quadrupedal and bipedal locomotion tasks.

Keywords: Model-Based Reinforcement Learning, Quadruped Locomotion,
Sim-to-Real Transfer

Figure 1: Go2 Walking on four and two legs using policies optimized with DMO.

1 Introduction

Reinforcement learning (RL) has led to impressive results in robotics, from agile quadrupedal
[1, 2, 3, 4, 5] and humanoid [6, 7] locomotion to dexterous manipulation [8, 9]. Popular model-
free RL algorithms such as DDPG [10], SAC [11, 12], or PPO [13] have powered many of these
results, offering generality and strong asymptotic performance. However, deep RL remains sample-
inefficient. Most successful applications rely on massive simulation throughput, leveraging GPU-

*Correspondence to joseph.amigo@nyu.edu

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://machines-in-motion.github.io/DMO/

accelerated environments like Isaac Gym [14, 15] or MuJoCo [16] to run thousands of rollouts in
parallel. This trend has become central to scaling RL in high-dimensional robotics settings.

Differentiable simulators [17, 18, 19] have attracted a growing interest, as they allow computing pol-
icy gradients directly through physics. These methods often improve learning speed and numerical
stability by enabling more informative updates. In a similar spirit, we propose to exploit the ad-
ditional information of derivatives to enhance learning efficiency. Yet, building fully differentiable
simulators remains challenging as contact dynamics are frequently only piecewise differentiable,
and implementing gradients for complex environments remains time-consuming and error-prone.

Model-based RL (MBRL) provides an appealing alternative. Rather than relying on simulators that
use explicit physical models, MBRL learns a model of the environment directly from data. The
result is a differentiable dynamics model that enables both fast GPU-based rollouts and first-order
optimization. Several recent works have shown that MBRL can outperform model-free methods
in sample efficiency, particularly when paired with differentiable solvers in so-called first-order
gradient MBRL (FoG-MBRL) [20, 21, 22, 23]. Yet, these methods seldom leverage existing high-
quality robot simulators, hence sacrificing realism, domain knowledge, and first-principle physics
models.

This work proposes to address these issues through Decoupled forward-backward Model-based pol-
icy Optimization (DMO), a first-order gradient reinforcement learning method that reduces trajec-
tory prediction error by decoupling forward simulation (i.e., trajectory unrolling) from gradient com-
putation. In contrast to typical MBRL approaches that rely on a single learned model for both, DMO
uses a high-fidelity simulator to generate trajectories and learn the value function, while computing
gradients through a differentiable learned model. This enables stable and efficient policy updates via
analytical gradients, while still benefiting from GPU-accelerated simulation. Interestingly, DMO
can be applied seamlessly on top of many FoG-based methods.

We demonstrate its benefits across a suite of eight control benchmarks, including dexterous manip-
ulation, humanoid, and quadruped tasks. DMO stabilizes training, improves wall-clock time, and
enables robust sim-to-real transfer, even in challenging modes such as bipedal locomotion. DMO
not only yields substantial gains in sample efficiency, by an order of magnitude over PPO, but it also
consistently reduces wall-clock training time, achieving up to 20% improvement despite the added
complexity of model learning and gradient computation. It can even enable no-batch learning, a
setting notably difficult [24]. While improved wall-clock efficiency is arguably DMO’s most imme-
diate benefit, we believe its sample efficiency will become increasingly desirable as more complex
simulators, such as foundation world models or learning directly on real robots, gain traction with
significantly higher evaluation costs compared to current physics-based simulators. Finally, policies
trained with DMO are robust enough to be directly deployed on a quadruped robot.

2 Related Work

RL with model-based unrolling of trajectories MBRL [25, 26, 27, 22, 28, 29] can be used in
setups where the model and the policy are trained concurrently or asynchronously. In the concurrent
case, the learned dynamic model generates trajectories to train the policy, while the policy collects
real samples to refine the learned model. Alternatively, the process can be asynchronous, where the
dynamic model is first trained using an offline dataset and then frozen before being used to generate
trajectories for policy training [30, 31]. FoG-MBRL leverages learned dynamics models to directly
backpropagate the expected sum of discounted returns through predicted trajectories [32, 21, 33,
34, 35, 36, 37]. The fundamental motivation stems from the hypothesis that analytical gradient
approximations provide lower-variance estimates compared to zeroth-order gradient methods [23],
potentially enabling more sample-efficient learning. These methods construct an autodifferentiation
graph from the initial state to the latest predicted state, incorporating the partial derivatives of the
learned model with respect to its inputs. Then the gradient of returns can be backpropagated to the
policy parameters. MAAC [23] exemplifies this approach by unrolling trajectories using a learned
model and computing policy gradients through truncated sub-trajectories, which are completed using

2

a Q-value approximation. A notable issue of FoG-MBRL is the accumulation of prediction errors in
the trajectory rollouts, which hinders training efficiency and optimality [38, 39]. These models are
also commonly found in planning-based approaches that use tree search methods [40, 41, 42, 43] or
are used in conjunction with online trajectory optimization or model predictive control [44, 45, 46,
47, 48, 49].

FoG-RL with decoupled gradient evaluation Prior work, such as PILCO and SVG(∞) [50, 51,
52], explores computing policy gradients using derivatives of learned models along real trajectories
rather than predicted ones. This method inherently avoids prediction errors accumulation. Despite
its theoretical advantages, this paradigm has been largely overlooked in subsequent research. For
instance, SAC-SVG(H) [36], a successor to SVG(∞), did not include this technique, and to our
knowledge, no comprehensive ablation studies have been conducted to empirically evaluate the
benefits of decoupling trajectory generation and gradient computation. In this paper, we revisit
this idea to enhance modern FoG-MBRL algorithms. Unlike more recent approaches, SVG(∞)
optimizes cumulative returns along entire trajectories, and not along small subtrajectories (as done in
e.g., MAAC [23]), which can prove limiting. Such a decoupling has also been explored in model-free
settings [53] where simplified algorithms are used to approximately evaluate the simulator gradients
along accurate trajectories rolled out using a high-fidelity simulator.

Differentiable simulators Differentiable simulators [18, 54, 19] offer an alternative to learned
dynamics models by directly providing analytical partial derivatives of the state transitions. One
notable example of leveraging differentiable simulators is SHAC [18], which computes policy gra-
dients using analytical derivatives of the simulator dynamics. Another example is SAPO [19], which
extends the SHAC framework by incorporating advanced policy optimization techniques such as
maximum entropy regularization, state-dependent policy variance, and clipped double critic trick
without target networks. These enhancements make SAPO particularly effective in exploration-
heavy environments, where balancing exploration and exploitation is critical. Policies trained on
Differentiable simulators have successfully been transferred to real robots [55, 53]. Yet, their devel-
opment is hindered by the challenge of efficiently computing analytical derivatives in contact-rich
or multi-physics environments (e.g., soft bodies). Moreover, their non-smooth gradient landscapes
may lead to inefficient optimization [56, 57, 58]. Learned models, on the other hand, provide by
design approximate yet smooth dynamic models [35] that can be used in such complex settings.

3 Method

We now present our main contribution: Decoupled forward-backward Model-based policy Opti-
mization (DMO). DMO updates policy parameters using FoG estimates approximated with the
derivatives of a learned model along trajectories generated by a high-fidelity simulator. By de-
coupling trajectory generation and gradient computation, DMO mitigates the error accumulation
that often hinders FoG-MBRL algorithms, as demonstrated empirically in the next section.

3.1 Background

Reinforcement learning We consider an infinite horizon, discounted Markov Decision Process
(MDP) (S,A, r, γ, f), where S is the state space,A is the action space, r : S×A → R is the reward
function, γ is the discount factor, and f : S × A → P(S) is the dynamics function. Here, P(S)
denotes the space of probability distributions over states. RL aims to find a policy π : S → P(A)
that maximizes the discounted sum of future rewards:

max
π

Eτ∼π,f

[∞∑
t=0

γtr(st, at)

]
, (1)

where τ is the distribution of the trajectories under f and π and
∑∞
t=0 γ

tr(st, at) is the discounted
episodic return evaluated on a particular trajectory τ , denoted by G(τ). We parametrize the policy
πθ with a neural network.

3

Model-based RL with first order gradients We need the partial derivatives of the dynamics with
respect to state and action to compute the gradients of the RL objective G(θ) with respect to the
policy parameters. The policy gradient is estimated from the gradient of the episodic return:

∇θG(θ) = ∇θ
∞∑
t=0

γtr(st, at) =

∞∑
t=0

γt

[
∂r(s, a)

∂s

∣∣∣∣
(st,at)

dst
dθ

+
∂r(s, a)

∂a

∣∣∣∣
(st,at)

dat
dθ

]
, (2)

with: 
dst+1

dθ
=
∂f(s, a)

∂s

∣∣∣∣
(st,at)

dst
dθ

+
∂f(s, a)

∂a

∣∣∣∣
(st,at)

dat
dθ

dat+1

dθ
=
∂πθ(s)

∂θ

∣∣∣∣
(θ̃,st)

+
∂πθ(s)

∂s

∣∣∣∣
(θ̃,st)

dst
dθ

(3)

For ∂f(s,a)∂s

∣∣∣∣
(st,at)

and ∂f(s,a)
∂a

∣∣∣∣
(st,at)

, FoG-MBRL learns an approximation of the dynamics, f̂ϕ, and

uses it to approximate ∂f(s,a)
∂s ≈ ∂f̂ϕ(s,a)

∂s and ∂f(s,a)
∂a ≈ ∂f̂ϕ(s,a)

∂a .

3.2 Implementation of DMO

To demonstrate the generality of our approach, we apply DMO to three distinct FoG algorithms:

1. DMO-BPTT: This lightweight configuration uses backpropagation through time (BPTT)
to compute gradients by truncating trajectories and directly propagating returns through the
dynamics model. This algorithm is also known as APG [17]. It avoids reliance on a value
function, making it suitable for tasks with shorter horizons or dense rewards.

2. DMO-SHAC: In this variant, truncated trajectory returns are supplemented with estimated
future returns using a learned value function. This enables DMO to tackle tasks dependent
on long-term or sparse rewards. It is the direct application of DMO to SHAC [18].

3. DMO-SAPO: This configuration incorporates SAPO’s [19] key enhancements to the
SHAC framework, including maximum entropy regularization, state-dependent policy vari-
ance, and clipped double critic trick without target networks. This variant excels in
exploration-heavy environments.

For each implementation, we now detail how we learn the model, the critic, and the actor. Complete
algorithmic details are available in Appendix A.1.2.

Model learning For all three versions, our proposed approach learns a model f̂ϕ of the dynamics
by filling a replay buffer with samples encountered during policy training. f̂ϕ is parameterized as a
multi-layer perceptron (MLP). Policy learning, value function learning (for DMO-SHAC and DMO-
SAPO), and model learning happen at the same time. The outputs of f̂ϕ parametrize a Gaussian
distribution with diagonal covariance:

pϕ(st+1 | st, at) = N (µϕ(st, at),Σϕ(st, at)) .

and is optimized using the following maximum likelihood objective:

Lf̂ (ϕ) = E(s,a,s′)∼B [pϕ(s
′ | s, a)] , (4)

where B represents the replay buffer filled with previously observed trajectories.

Critic learning DMO-SHAC and DMO-SAPO learn an approximator V πθ

ψ , parametrized by ψ,
to the value function of the policy derived from πθ: V πθ

ψ (si) ≈ Eτ∼πθ,f

[∑∞
t=i γ

t−ir (st, at)
]

for DMO-SHAC and V πθ

ψ (si) ≈ Eτ∼πθ,f

[∑∞
t=i γ

t−i (r (st, at) + αHπ [at | st])
]

for DMO-SAPO

4

(see Appendix A.1.1). Hπ[at | st] is the continuous Shannon entropy of the action distribution.
Here, the temperature parameter α determines the trade-off between exploration (through entropy
maximization) and exploitation (reward optimization). V πθ

ψ is then used as an estimate of the value
of πθ to shorten the rollout horizon without adding regret when evaluating the return G(τ):

LDMO-SHAC
π (θ) := Eτ∼πθ,f

[
H−1∑
h=1

γhr (sh, ah) + γHV πθ

ψ (sH)

]
, (5)

LDMO-SAPO
π (θ) := Eτ∼πθ,f

[
H−1∑
h=1

γh
(
r (sh, ah) + αHπ [at | st]

)
+ γHV πθ

ψ (sH)

]
. (6)

Since DMO unrolls the trajectories using the high fidelity simulator, we learn the approximator
V πθ

ψ using real samples from the simulator, instead of samples generated by the learned model, as
is usually done in MBRL. DMO-BPTT truncates the horizon and simply uses the gradient of the
following loss:

LDMO-BPTT
π (θ) := Eτ∼πθ,f

[
H−1∑
h=1

r (sh, ah)

]
. (7)

Actor learning The actor πθ is parametrized as an MLP. Its outputs parametrize a Gaussian distri-
bution with diagonal covariance πθ(at | st) = N (µθ(st),Σθ), for DMO-SHAC and DMO-BPTT,
and πθ(at | st) = N (µθ(st),Σθ(st)) for DMO-SAPO. The actor is learned through gradient de-
scent on the shortened returns on a batch of rollouts. During the forward pass of the optimization
algorithm, the simulator is used to get the true next state st+1 = f(st, at), unlike previous FoG-
MBRL methods that use f̂ϕ to predict f̂ϕ(ŝt, at) = ŝt+1 ≈ st+1. During the backward pass,
however, f̂ϕ is used to approximate the partial derivatives of the true dynamics f . But instead of

using the partial derivatives of f̂ϕ taken at ŝt+1, ∂f̂ϕ(s,a)∂s

∣∣∣∣
(ŝt+1,at+1)

, DMO uses the partial deriva-

tives of f̂ϕ taken at st+1, ∂f̂ϕ(s,a)
∂s

∣∣∣∣
(st+1,at+1)

. This separation—using the simulator for forward

trajectory unrolling and the learned model for gradient computation—represents what we refer to
as ”decoupling.” Unlike most approaches, where both forward and backward passes are performed
using the same function (e.g., either the simulator or the learned model), DMO explicitly separates
these two processes by using different functions. We use a stochastic policy πθ for exploration
purposes. We use the reparametrization trick [59] to sample from πθ and compute a valid gradient
with it (see Appendix A.1.4). We rely on the automatic differentiation framework of PyTorch [60]
to compute the complete first-order gradient estimate of (5) (DMO-SHAC), (6) (DMO-SAPO), or
(7) (DMO-BPTT). Additionally, we propose an efficient numerical implementation that removes the
need for computation graph manipulation (detailed in Appendix A.1.3) and allows the integration of
decoupling in very few lines of code.

4 Experiments

4.1 Experimental Setup

Simulation Environments We conduct most of our experiments on the environments provided by
the DFlex simulator [18] (Figure 2). DFlex is a GPU-accelerated differentiable simulator. It comes
with six already implemented environments: Ant, Hopper, Cheetah, Humanoid, and SNUHumanoid.
We chose this simulator as it satisfied two key requirements for our method: (1) DFlex parallelizes
the simulation on the GPU, and (2) the reward functions of the provided environments are designed
for and thus compatible with FoG methods. For these environments, we only report results of
DMO-SHAC, as DMO-BPTT did not perform well, and DMO-SAPO achieved comparable results
on them. We added to this benchmark the AllegroHand environment adapted for FoG methods [19].

5

Ant SNU Humanoid Cheetah Hopper Allegro Hand Humanoid

Figure 2: Visualizations of Environments Trained with DMO. Each image represents a distinct
simulation environment: Ant, SNU Humanoid, Cheetah, Hopper, Allegro Hand, and Humanoid.

Real Robot Experiment Setup for Quadrupedal Motion We trained a velocity-commanded
walking policy for the Unitree Go2 quadruped robots using DMO and successfully deployed it on
the real robot. For the simulation, we used the GPU-accelerated non-differentiable IsaacGym sim-
ulator [14]. To facilitate sim-to-real transfer, we incorporated a simple joint friction model during
training and randomized its parameters [61]. The reward function used for training was adapted
from Margolis and Agrawal [62], with modifications to fix the gait parameters that were originally
designed as adjustable commands. A detailed description of the reward and the observations is
given in Appendix A.3.1. The policy sends desired positions, which are tracked with a low-level PD
controller.

Real Robot Experiment Setup for Bipedal Motion with Go2 To demonstrate the ability of
DMO to generate dynamic behaviors, we developed a bipedal locomotion environment for the Go2
quadruped robot in IsaacGym, where the robot must transition from standing on all four legs to
steady balancing on its front legs. The reward and early stopping structure, inspired by [63], en-
courages both the initial lifting motion and sustained balance. This formulation requires sufficient
exploration to discover effective strategies for transitioning to and maintaining a bipedal stance. As
expected, DMO-SHAC and DMO-BPTT did not perform well due to their poor exploration abilities,
so we only report results for DMO-SAPO.

Baselines for Comparison We evaluate our algorithm against PPO [13] and SAC [11, 12], two
model-free RL algorithms widely used in robotics. We also compare against MAAC [23], a FoG-
MBRL method. For MAAC, we implemented a modernized version using parallel data collection,
gathering a batch of samples at each environment step instead of a single sample. This modification
significantly improved the wall-clock efficiency of the algorithm. Additionally, we employed the
same value function learning scheme as DMO-SHAC, when compared to DMO-SHAC, or DMO-
SAPO, when compared to DMO-SAPO, as it generally outperforms standard TD-learning and en-
ables a fairer comparison. Note that the hyperparameters for the original MAAC algorithm were not
publicly available.

4.2 Results and Analysis

Sample and Time Efficiency In our experiments, DMO achieves asymptotic convergence with
fewer than 4 million samples, over ten times less than PPO, highlighting the efficiency of our
method. Figure 3 (left) showcases DMO dominance in sample efficiency across algorithms. Fur-
thermore, as shown in Figure 4 (left), even when PPO is trained with 160M samples and SAC with
40M samples—while DMO and MAAC remain at 4M samples—DMO maintains unparalleled sam-
ple efficiency and surpasses the asymptotic performance of the compared methods, including PPO,
demonstrating its potential for rapid, resource-efficient training. Individual sample efficiency curves
for every environment are available in Appendix A.2.1. Figure 4 (right) further illustrates DMO
superior wall-clock time efficiency across all environments compared to PPO (160M samples) and
SAC (40M samples), with DMO and MAAC still using only 4M samples. This result is particularly
noteworthy, as prior model-based RL methods like MAAC often suffer from significant computa-
tional overhead—evident in MAAC prolonged training time for just 4M samples—negating their
theoretical sample efficiency gains. DMO, in contrast, delivers both sample and time efficiency. We

6

Figure 3: Left: Sample Efficiency at 4M Samples. Results for DMO, PPO, SAC, and MAAC,
all limited to 4M samples. Right: Sample Efficiency with Model-Based Ablation. Comparison
of DMO to its counterpart that uses learned model forward passes, both at 4M samples. Aggregate
normalized scores with mean and 95% confidence intervals over all environments and 5 seeds are
shown.

Figure 4: Left: Sample Efficiency at Extended Training. Results for DMO and MAAC using 4M
samples, while PPO is trained for 160M samples and SAC for 40M samples. Right: Wall-Clock
Time Efficiency at Extended Training. Results for the same sample allocations as on the left.
Aggregate normalized scores with mean and 95% confidence intervals across all environments and
5 seeds are shown.

also compared with the main baselines in first-order RL (SHAC/SAPO) and have shown that DMO
is competitive in both efficiency and final convergence accuracy, despite it is not using the extra
information available to these algorithms (see Appendix A.2.1).

Go2 Walking Environment Analysis In the Go2 environment, we made two key discoveries.
First, the considered reward function inspired from Margolis and Agrawal [62] is densely informa-
tive, hence it eliminates the need for the value function in (5)-(6), enabling the use of DMO-BPTT,
similar to [53]. Indeed, the considered reward ensures that the optimal behavior over a short horizon
of 16 steps (like the one employed in this study) is close to the optimal behavior over an infinite
horizon. Second, removing the value function allows training without batch updates, resulting in the
most sample-efficient configuration. As shown in Figure 5 (left), sample efficiency increases as the
batch size of policy updates decreases, reaching its top efficiency at a batch size of 1. This finding
is surprising, as very small batch sizes typically degrade gradient estimate quality.

Real Robot Deployment Experiments on the real robot demonstrate that the learned policies, for
both the quadrupedal and bipedal tasks, are robust and transferable. A video of the policies deployed
on the real robot is available in the supplementary material.

4.3 Ablative analysis

Ablation Study on Decoupling Effect To isolate the impact of decoupling trajectory sim-
ulation from gradient computation in DMO, we conducted an ablation study by mod-
ifying our algorithm to use the learned model for forward passes, akin to tradi-
tional model-based RL (MBRL) approaches. In this variant, termed ”Model-Based For-

ward,” the gradients ∂f̂ϕ(s,a)
∂s

∣∣∣∣
(st+1,at+1)

and ∂f̂ϕ(s,a)
∂a

∣∣∣∣
(st+1,at+1)

are replaced by approx-

7

Figure 5: Left: Sample Efficiency of DMO-BPTT Across Batch Sizes for the Go2 Quadrupedal
Task. This illustrates the sample efficiency of DMO-BPTT for various batch sizes, with mean and
95% confidence intervals calculated over 5 seeds. Notably, sample efficiency increases as batch size
decreases to 1, and DMO-BPTT remains stable even in this configuration. Right: Cosine Simi-
larity of Gradient Computations. This shows the cosine similarity (higher values indicate greater
similarity) between gradients computed with DFlex and DMO, and between gradients computed
with DFlex and the DMO counterpart that uses learned model forward passes. Results are aggre-
gated across all five DFlex environments, with mean and 95% confidence intervals calculated over
5 seeds.

imations computed from the learned model along trajectories predicted by the model,
∂f̂ϕ(s,a)

∂s

∣∣∣∣
(ŝt+1,at+1)

and ∂f̂ϕ(s,a)
∂a

∣∣∣∣
(ŝt+1,at+1)

. As shown in Figure 3 (right), the comparison be-

tween DMO and ”Model-Based Forward” reveals the substantial benefit of decoupling. With the
only difference being the use of decoupled gradients, DMO achieves nearly double the asymptotic
performance on average, underscoring the critical role of this design choice in enhancing sample
efficiency and overall effectiveness.

Ablative Analysis of Gradients We conducted an experiment where we unrolled three trajecto-
ries in parallel, constructing separate backpropagation graphs for each: (1) DFlex trajectories, where
partial derivatives of the dynamics were provided by the differentiable simulator; (2) DMO-SHAC
trajectories, based on our method; and (3) trajectories unrolled with the learned model, generated
under the exact same conditions as DMO-SHAC. For each trajectory, we computed the policy gradi-
ent and measured the cosine similarity between the DFlex gradient and the DMO gradient, as well as
between the DFlex gradient and the gradient of the model-predicted trajectory. The DMO gradients
were used to update the policy. Figure 5 (right) presents these cosine similarities, demonstrating
empirically that decoupled gradients provide more precise policy updates.

5 Conclusion

We introduced Decoupled forward-backward Model-based policy Optimization (DMO), an ap-
proach that leverages GPU-accelerated simulators and decoupled gradient computation to achieve
state-of-the-art sample and wall-clock efficiency in reinforcement learning for robotics. By sep-
arating trajectory generation from gradient estimation, DMO significantly stabilizes learning and
mitigates error accumulation compared to prior FoG-MBRL methods. Notably, DMO significantly
outperforms PPO, converging with tenfold fewer samples, exceeding its asymptotic performance,
and showing better time efficiency. Our experiments across diverse environments, including real-
world deployment on the Go2 quadruped robot for both walking and bipedal tasks, demonstrate its
practical effectiveness and transferability. Future work could explore whether FoG-MBRL methods
can scale effectively and remain competitive on even more complex real-world tasks, such as per-
forming Parkour using first-person depth camera inputs, which are currently dominated by other RL
approaches.

8

Limitations

Our proposed method has two primary limitations. First, it requires differentiable reward functions.
Many existing reward designs incorporate discrete components, such as survival bonuses, which pro-
duce zero gradients. In such scenarios, learning heavily depends on the value function, undermining
the structural benefits of First-Order Gradient (FoG) methods. Consequently, reward functions often
need to be redesigned to ensure compatibility, which can be a non-trivial task.

Second, our approach employs a simplistic world model, specifically an MLP regressing the next
state given a state-action input. This model is ill-suited for complex inputs like images or point
clouds, where more sophisticated models, such as those in [48, 31], would be more appropriate.
However, this limitation is orthogonal to our core contribution of decoupled gradient computation,
and integrating advanced world models with our method remains a promising direction for future
work.

Acknowledgments

We used Open RL Benchmark [64] to generate the graphs shown in this paper.

References
[1] X. Cheng, K. Shi, A. Agarwal, and D. Pathak. Extreme parkour with legged robots. arXiv

preprint arXiv:2309.14341, 2023.

[2] D. Hoeller, N. Rudin, D. Sako, and M. Hutter. Anymal parkour: Learning agile navigation for
quadrupedal robots. Science Robotics, 9(88):eadi7566, 2024.

[3] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao. Robot parkour
learning. arXiv preprint arXiv:2309.05665, 2023.

[4] E. Chane-Sane, P.-A. Leziart, T. Flayols, O. Stasse, P. Souères, and N. Mansard. Cat:
Constraints as terminations for legged locomotion reinforcement learning. arXiv preprint
arXiv:2403.18765, 2024.

[5] E. Chane-Sane, J. Amigo, T. Flayols, L. Righetti, and N. Mansard. Soloparkour: Constrained
reinforcement learning for visual locomotion from privileged experience. In Conference on
Robot Learning. arXiv, 2024.

[6] I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and K. Sreenath. Real-world humanoid
locomotion with reinforcement learning. Science Robotics, 9(89):eadi9579, 2024.

[7] Z. Zhuang, S. Yao, and H. Zhao. Humanoid parkour learning. arXiv preprint
arXiv:2406.10759, 2024.

[8] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk,
K. Van Wyk, A. Zhurkevich, B. Sundaralingam, et al. Dextreme: Transfer of agile in-hand
manipulation from simulation to reality. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pages 5977–5984. IEEE, 2023.

[9] A. Allshire, M. MittaI, V. Lodaya, V. Makoviychuk, D. Makoviichuk, F. Widmaier,
M. Wüthrich, S. Bauer, A. Handa, and A. Garg. Transferring dexterous manipulation from
gpu simulation to a remote real-world trifinger. In 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 11802–11809. IEEE, 2022.

[10] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning, 2019. URL https://arxiv.org/

abs/1509.02971.

9

https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971

[11] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[12] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications, 2019. URL https:

//arxiv.org/abs/1812.05905.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

[14] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac gym: High performance gpu-based physics simula-
tion for robot learning, 2021.

[15] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In Conference on Robot Learning, pages 91–100. PMLR,
2022.

[16] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–
5033. IEEE, 2012. doi:10.1109/IROS.2012.6386109.

[17] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax–a differen-
tiable physics engine for large scale rigid body simulation. arXiv preprint arXiv:2106.13281,
2021.

[18] J. Xu, V. Makoviychuk, Y. Narang, F. Ramos, W. Matusik, A. Garg, and M. Macklin. Accel-
erated policy learning with parallel differentiable simulation. In International Conference on
Learning Representations, 2021.

[19] E. Xing, V. Luk, and J. Oh. Stabilizing reinforcement learning in differentiable multiphysics
simulation. arXiv preprint arXiv:2412.12089, 2024.

[20] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
arXiv preprint arXiv:2010.02193, 2020.

[21] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023.

[22] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy
optimization. Advances in neural information processing systems, 32, 2019.

[23] I. Clavera, V. Fu, and P. Abbeel. Model-augmented actor-critic: Backpropagating through
paths, 2020. URL https://arxiv.org/abs/2005.08068.

[24] M. Elsayed, G. Vasan, and A. R. Mahmood. Deep reinforcement learning without experi-
ence replay, target networks, or batch updates. In NeurIPS 2024 Workshop on Fine-Tuning in
Modern Machine Learning: Principles and Scalability.

[25] R. S. Sutton. Integrated architectures for learning, planning, and reacting based on approximat-
ing dynamic programming. In Machine learning proceedings 1990, pages 216–224. Elsevier,
1990.

[26] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-learning with model-based
acceleration. In International conference on machine learning, pages 2829–2838. PMLR,
2016.

[27] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel. Model-ensemble trust-region policy
optimization. arXiv preprint arXiv:1802.10592, 2018.

10

https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1707.06347
http://dx.doi.org/10.1109/IROS.2012.6386109
https://arxiv.org/abs/2005.08068

[28] J. Buckman, D. Hafner, G. Tucker, E. Brevdo, and H. Lee. Sample-efficient reinforcement
learning with stochastic ensemble value expansion. Advances in neural information processing
systems, 31, 2018.

[29] V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and S. Levine. Model-based value
estimation for efficient model-free reinforcement learning. arXiv preprint arXiv:1803.00101,
2018.

[30] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-based
offline policy optimization, 2020. URL https://arxiv.org/abs/2005.13239.

[31] C. Li, A. Krause, and M. Hutter. Offline robotic world model: Learning robotic policies
without a physics simulator, 2025. URL https://arxiv.org/abs/2504.16680.

[32] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by
latent imagination. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=S1lOTC4tDS.

[33] P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg. Daydreamer: World models for
physical robot learning. In Conference on robot learning, pages 2226–2240. PMLR, 2023.

[34] R. Ghugare, H. Bharadhwaj, B. Eysenbach, S. Levine, and R. Salakhutdinov. Simplifying
model-based rl: learning representations, latent-space models, and policies with one objective.
arXiv preprint arXiv:2209.08466, 2022.

[35] I. Georgiev, V. Giridhar, N. Hansen, and A. Garg. Pwm: Policy learning with large world
models. arXiv preprint arXiv:2407.02466, 2024.

[36] B. Amos, S. Stanton, D. Yarats, and A. G. Wilson. On the model-based stochastic value
gradient for continuous reinforcement learning. In Learning for Dynamics and Control, pages
6–20. PMLR, 2021.

[37] A. Byravan, J. T. Springenberg, A. Abdolmaleki, R. Hafner, M. Neunert, T. Lampe, N. Siegel,
N. Heess, and M. Riedmiller. Imagined value gradients: Model-based policy optimization with
tranferable latent dynamics models. In Conference on Robot Learning, pages 566–589. PMLR,
2020.

[38] N. Lambert, K. Pister, and R. Calandra. Investigating compounding prediction errors in learned
dynamics models, 2022. URL https://arxiv.org/abs/2203.09637.

[39] C. Xiao, Y. Wu, C. Ma, D. Schuurmans, and M. Müller. Learning to combat compounding-
error in model-based reinforcement learning, 2019. URL https://arxiv.org/abs/1912.

11206.

[40] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-
hart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a
learned model. Nature, 588(7839):604–609, 2020.

[41] Y. Niu, Y. Pu, Z. Yang, X. Li, T. Zhou, J. Ren, S. Hu, H. Li, and Y. Liu. Lightzero: A unified
benchmark for monte carlo tree search in general sequential decision scenarios. Advances in
Neural Information Processing Systems, 36, 2024.

[42] Y. Pu, Y. Niu, J. Ren, Z. Yang, H. Li, and Y. Liu. Unizero: Generalized and efficient planning
with scalable latent world models. arXiv preprint arXiv:2406.10667, 2024.

[43] C. Xuan, Y. Niu, Y. Pu, S. Hu, Y. Liu, and J. Yang. Rezero: Boosting mcts-based algorithms
by backward-view and entire-buffer reanalyze. arXiv preprint arXiv:2404.16364, 2024.

11

https://arxiv.org/abs/2005.13239
https://arxiv.org/abs/2504.16680
https://openreview.net/forum?id=S1lOTC4tDS
https://arxiv.org/abs/2203.09637
https://arxiv.org/abs/1912.11206
https://arxiv.org/abs/1912.11206

[44] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. Advances in neural information processing
systems, 31, 2018.

[45] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In International conference on machine learning, pages
2555–2565. PMLR, 2019.

[46] T. Wang and J. Ba. Exploring model-based planning with policy networks. arXiv preprint
arXiv:1906.08649, 2019.

[47] N. Hansen, X. Wang, and H. Su. Temporal difference learning for model predictive control. In
ICML, 2022.

[48] N. Hansen, H. Su, and X. Wang. Td-mpc2: Scalable, robust world models for continuous
control, 2024.

[49] S. Bechtle, Y. Lin, A. Rai, L. Righetti, and F. Meier. Curious ilqr: Resolving uncertainty in
model-based rl. In Proceedings of the Conference on Robot Learning, volume 100 of Proceed-
ings of Machine Learning Research, page 162–171, Osaka, Japan, Nov. 2019.

[50] M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to pol-
icy search. In Proceedings of the 28th International Conference on machine learning (ICML-
11), pages 465–472, 2011.

[51] S. Levine and P. Abbeel. Learning neural network policies with guided policy search under
unknown dynamics. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Wein-
berger, editors, Advances in Neural Information Processing Systems, volume 27. Curran As-
sociates, Inc., 2014. URL https://proceedings.neurips.cc/paper_files/paper/

2014/file/6766aa2750c19aad2fa1b32f36ed4aee-Paper.pdf.

[52] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa. Learning continuous control
policies by stochastic value gradients. Advances in neural information processing systems, 28,
2015.

[53] Y. Song, S. Kim, and D. Scaramuzza. Learning quadruped locomotion using differentiable
simulation. arXiv preprint arXiv:2403.14864, 2024.

[54] I. Georgiev, K. Srinivasan, J. Xu, E. Heiden, and A. Garg. Adaptive horizon actor-critic for pol-
icy learningin contact-rich differentiable simulation. In International Conference on Machine
Learning. PMLR, 2024.

[55] J. Bagajo, C. Schwarke, V. Klemm, I. Georgiev, J.-P. Sleiman, J. Tordesillas, A. Garg, and
M. Hutter. Diffsim2real: Deploying quadrupedal locomotion policies purely trained in differ-
entiable simulation. arXiv preprint arXiv:2411.02189, 2024.

[56] L. Metz, C. D. Freeman, S. S. Schoenholz, and T. Kachman. Gradients are not all you need.
arXiv preprint arXiv:2111.05803, 2021.

[57] H. J. Suh, M. Simchowitz, K. Zhang, and R. Tedrake. Do differentiable simulators give better
policy gradients? In International Conference on Machine Learning, pages 20668–20696.
PMLR, 2022.

[58] Q. L. Lidec, L. Montaut, C. Schmid, I. Laptev, and J. Carpentier. Augmenting differentiable
physics with randomized smoothing. arXiv preprint arXiv:2206.11884, 2022.

[59] D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2022. URL https://arxiv.

org/abs/1312.6114.

12

https://proceedings.neurips.cc/paper_files/paper/2014/file/6766aa2750c19aad2fa1b32f36ed4aee-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/6766aa2750c19aad2fa1b32f36ed4aee-Paper.pdf
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114

[60] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Rai-
son, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Py-
torch: An imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/

bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

[61] M. Duclusaud, G. Passault, V. Padois, and O. Ly. Extended friction models for the physics
simulation of servo actuators, 2025. URL https://arxiv.org/abs/2410.08650.

[62] G. B. Margolis and P. Agrawal. Walk these ways: Tuning robot control for generalization with
multiplicity of behavior. In Conference on Robot Learning, pages 22–31. PMLR, 2023.

[63] Y. Li, J. Li, W. Fu, and Y. Wu. Learning agile bipedal motions on a quadrupedal robot. In 2024
IEEE International Conference on Robotics and Automation (ICRA), pages 9735–9742. IEEE,
2024.

[64] S. Huang, Q. Gallouédec, F. Felten, A. Raffin, R. F. J. Dossa, Y. Zhao, R. Sullivan, V. Makoviy-
chuk, D. Makoviichuk, M. H. Danesh, C. Roumégous, J. Weng, C. Chen, M. M. Rah-
man, J. G. M. Araújo, G. Quan, D. Tan, T. Klein, R. Charakorn, M. Towers, Y. Berthelot,
K. Mehta, D. Chakraborty, A. KG, V. Charraut, C. Ye, Z. Liu, L. N. Alegre, A. Nikulin,
X. Hu, T. Liu, J. Choi, and B. Yi. Open RL Benchmark: Comprehensive Tracked Experi-
ments for Reinforcement Learning. arXiv preprint arXiv:2402.03046, 2024. URL https:

//arxiv.org/abs/2402.03046.

A Appendix

A.1 Algorithmic Details

A.1.1 Critic learning

V πθ

ψ is learned with SGD by optimizing:

LV (ψ) :=
H−1∑
h=1

∥∥∥V πθ

ψ (sh)− V̂ (sh)
∥∥∥2
2
, (8)

where:

Vh (st) :=

t+h−1∑
n=t

γn−tr (sn, an) + γt+hV πθ

ψ (st+h) (9)

V̂ (st) := (1− λ)

[
H−t−1∑
h=1

λh−1Vh (st)

]
+ λH−t−1VH (st) (10)

A.1.2 DMO algorithm

The complete algorithm is detailed in Algorithm 1. The differences between DMO and SHAC only
are colored in red, the differences between DMO and MAAC only are colored in blue, while the
differences with DMO that appear in both SHAC and MAAC are colored in orange.

13

https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://arxiv.org/abs/2410.08650
https://arxiv.org/abs/2402.03046
https://arxiv.org/abs/2402.03046

Algorithm 1 DMO algorithm

for epoch = 1 to N do
Dynamical model learning
for model mini epoch do

(s, a, s′) ∼ B
ϕ← ϕ+ αϕ∇ϕLf̂ (ϕ)

end for
Actor and critic learning
total reward← 0
for h = 1 to H do

ah ← πθ(sh)
sh+1 ← f(sh, ah) (instead of ŝh+1 ← f(ŝh, ah))
rh ← r(sh+1, ah)
total reward← total reward− rh

end for
Either compute Lπ(θ) = LDMO-SHAC

π (θ)/LDMO-SAPO
π (θ) from total reward and the value

V πθ

ψ (sH+1) or Lπ(θ) = LDMO-BPTT
π (θ) from total reward

Compute LV (ψ) from (s1, . . . , sH) (instead of (ŝ1, . . . , ŝH))

Use ∂f̂ϕ(s,a)
∂s

∣∣∣∣
(st+1,at+1)

and ∂f̂ϕ(s,a)
∂a

∣∣∣∣
(st+1,at+1)

to approximate ∂f(s,a)
∂s

∣∣∣∣
(st+1,at+1)

and

∂f(s,a)
∂a

∣∣∣∣
(st+1,at+1)

during the following backward pass.

∇θLπ(θ)← backward(Lπ(θ))
θ ← θ + αθ∇θLπ(θ)
ψ ← ψ + αψ∇ψLV (ψ) (for DMO-SHAC/SAPO only)

end for

14

A.1.3 PyTorch Decoupling Implementation

Listing 1: Gradient Swapping Function in PyTorch
class GradientSwapingFunction(Function):

@staticmethod
def forward(ctx , img_next_state , real_next_state):

return real_next_state.clone ()

@staticmethod
def backward(ctx , grad_real_next_state):

return grad_real_next_state , None

with torch.no_grad ():
real_next_obs_ , rew , done , extra_info = env.step(actions)

img_next_obs = dyn_model(obs , actions)
real_next_obs = GradientSwapingFunction.apply(img_next_obs ,

real_next_obs_.clone ())

Code 1 illustrates how decoupling can be implemented using PyTorch’s automatic differentiation
framework with minimal code and without the need for complex manual modifications to the back-
propagation graph. The key idea is to rely on the simulator to compute st+1 from st and at,
while simultaneously using the learned dynamics model to compute ŝt+1 from the same inputs.
The GradientSwapingFunction class ensures that the backpropagation flows through ŝt+1, as
required for gradient computations while keeping st+1 as a leaf node.

The implementation proceeds as follows. The simulator stepping function computes the real next
state st+1 given st and at, while the dynamics model predicts ŝt+1 from st and at. The forward

method of the GradientSwapingFunction class takes both ŝt+1 and st+1 as inputs. It returns a
copy of st+1, denoted as s̄t+1, which is inserted into the backpropagation graph. Then the backward
method ensures that, during backpropagation, PyTorch flows the gradient ∂Lπ(θ)

∂s̄t+1
(from the objective

function in Equation 5) back to ŝt+1. Finally, since ŝt+1 is predicted from st and at, the gradient
further flows back to st and at. This is repeated recursively and produces the correct decoupled
gradient approximation.

Formally, the backpropagation step taken in these settings from s̄t+1 to st and at can be written as:

dŝt+1

dst

dLπ(θ)
ds̄t+1

and
dŝt+1

dat

dLπ(θ)
ds̄t+1

.

Since s̄t+1 is a copy of st+1, and ŝt+1 = f̂(at, st), this can be rewritten as:

∂f̂(s, a)

∂s

∣∣∣∣
(st,at)

dLπ(θ)
dst+1

.

This is the decoupling formula. By design, f̂(s, a) is trained to match the simulator f(s, a), so this
approximation holds:

≈ ∂f(s, a)

∂s

∣∣∣∣
(st,at)

dLπ(θ)
dst+1

.

Finally, this simplifies to:
dst+1

dst

dLπ(θ)
dst+1

=
dLπ(θ)
dst

.

The same principle applies to gradients with respect to actions:

dŝt+1

dat

dLπ(θ)
ds̄t+1

≈ ∂f(s, a)

∂a

∣∣∣∣
(st,at)

dLπ(θ)
dst+1

.

This simplifies further to:
dst+1

dat

dLπ(θ)
dst+1

=
dLπ(θ)
dat

.

15

This is the backpropagation formula of the analytical policy gradient. In summary, the
GradientSwapingFunction ensures that the simulator-derived st+1 is used for accurate trajec-
tory unrolling, while the gradients flow back through the learned dynamics model, evaluated at the
accurate st.

A.1.4 Reparameterization Trick and Analytical Policy Gradient

FoG-MBRL usually models f(·|s, a) and πθ(·|s) as Gaussian distributions with diagonal covariance:
f(·|s, a) ∼ N (µ(s, a),Σ(s, a)) and πθ(·|s) ∼ N (µθ(s),Σθ(s)). This probabilistic representation
serves dual purposes: introducing exploration through policy stochasticity and capturing aleatoric
uncertainty [44] with model stochasticity. Resorting to Gaussian distributions enables the use of
the reparameterization trick [59], where samples from these distributions are generated by sampling
from a standard Gaussian N (0, 1), scaling by the covariance (e.g., Σ(s, a) or Σθ(s)), and shifting
by the mean (e.g., µ(s, a) or µθ(s)). This trick preserves the original distribution while allowing
gradients to flow through the sampling operation, thus allowing to directly optimize the RL objective
given in (1) with respect to θ, with Stochastic Gradient Descent (SGD). This is in contrast to most
MFRL methods that don’t assume any specific form for the distributions of the dynamic function.

A.2 Experimental Results

A.2.1 Detailed Results Across Environments

Figure 6: Episodic Return Performance Across Environments. This figure shows the episodic
return (mean ± std) at 4M samples (8M for Go2BipedalEnv). DMO represents the best-performing
DMO version for each environment. Although SHAC utilizes true model derivatives and does not
rely on learned dynamics, DMO achieves competitive performance. SHAC results are unavailable
for Go2Env and Go2BipedalEnv due to IsaacGym not being a differentiable simulator.

16

In Figure 6 we also included the results of SHAC [18] (or SAPO [19] for AllegroHand) for com-
parison, an algorithm close to ours but that uses the true derivatives instead of approximated ones.
However, on the Go2 walking and Go2 bipedal motion environment, SHAC couldn’t be trained
because we lacked a differentiable simulator.

A.3 Go2 Environment Specifications

These rewards use quantities not easily available on the real robot, such as the linear velocity of
the robot’s base and foot contact forces. The model has to learn these privileged measurements to
provide a gradient for them, yet the policy cannot learn from these quantities if we want to deploy
it on the real robot. Therefore, we used a different set of observations for the policy than for the
dynamics model.

A.3.1 Quadrupedal Task Reward and Observations

Table 1: List of Reward Terms and Formulas for the Go2 Quadrupedal Task.

Reward Term Formula

xy velocity tracking kxy vel · e
−

∥vxy−vcmd
xy ∥22

σvxy

yaw velocity tracking kyaw vel · e
− (ωz−ωcmd

z)
2

σωz

z velocity penalty −kz vel · v2
z

roll-pitch velocity penalty −krp vel · ∥ωxy∥22
orientation penalty −korient · ∥ProjGravityxy∥22
action rate penalty −kact · ∥at−1 − at∥22
2nd order action rate penalty −kact · ∥(at−2 − at−1)− (at−1 − at)∥22
joint velocities penalty −kdotq · ∥q̇∥22
Raibert heuristic footswing
tracking

−kraibert · ∥pground
x,y,foot − pground

x,y,raibert(v
cmd
xy , ω

cmd
z)∥22

contact plan tracking −kcpt ·
∑

foot (1− Cfoot (t))

(
1− e

− |f foot|2
σcf

)

footswing height tracking −kfht ·
∑

foot

(
hground
z,foot − h

ground
z,target,foot

)2
(1− Cfoot (t))

Definitions and Parameters:

• Scaling factors (k... values):

– kxy vel = 0.5, kyaw vel = 1.0, kz vel = 0.02

– krp vel = 0.001, korient = 5.0, kact = 0.1

– kdotq = 0.0001, kraibert = 10.0, kcpt = 1.0

– kfht = 30.0

• Key variables:

– hgroundz,foot : Height of foot f from ground plane

– hgroundz,target,foot(t): Target foot height from gait generator
– Cfoot(t): Desired contact state (0=swing, 1=stance)

17

Table 2: List of Observations for the Dynamics Model and Actor in the Go2 Quadrupedal
Task.

Observation Size Dyn. model Actor
linear velocity of the base 3 ✓

angular velocity of the base 3 ✓ ✓

command 3 ✓ ✓

projected gravity 3 ✓ ✓

joint positions 12 ✓ ✓

joint velocities 12 ✓ ✓

previous actions 12 ✓ ✓

clock inputs 4 ✓ ✓

foot x and y positions 8 ✓

foot forces 4 ✓

foot heights 4 ✓

18

A.3.2 Bipedal Task Reward and Observations

Table 3: Reward Terms and Formulas for the Go2 Bipedal Task.

Reward Term Formula

No Velocity Reward/Penalty klin exp
(
−∥vxy∥2

δlin

)
· 1stand · clip(h,hmin,hmax)−hmin

hmax−hmin
−

kvel pen∥vxy∥21t>tv
Angular Velocity Penalty −kω∥ωz∥21t>tc
Action Rate Penalty −kact∥at − at−1∥22
2nd Order Action Rate
Penalty

−kact∥(at−2 − at−1)− (at−1 − at)∥22

Joint Velocities Penalty −kq̇∥q̇∥22
Torque Limits Penalty −kτ

∑
j max

(
0, |τj | − τmaxσs

)
Footswing Height Tracking −kclr1t>tc

∑
f∈Ffront

(
hgroundz,f − hgroundz,target,f

)2
(1− Cf (t))

Contact Plan Tracking −kcfs1stand

∑
f∈Ffront

(1− Cf (t))
(
1− e−∥ff∥2/σcf

)
Stand-Air Penalty/Reward 1t<tc

(
−kair pen

∑
f∈Ffront

max(0, hgroundz,f − 0.06) +

kair rew

∑
f∈Fback

min(hgroundz,f , 0.06)
)

Lift-Up Reward klift · clip
(

H−Hmin

Hmax−Hmin
, 0, 1

)
Upright Posture Reward kup ·

(
0.5 · vf ·vu

∥vu∥ + 0.5
)2

Definitions and Parameters:

• 1stand =

{
1 if vf ·vu

∥vu∥ > 0.9

0 otherwise

• Scaling factors (k... values):

– klin = 1.0, kvel pen = 0.4, kω = 0.1

– kact = 0.03, kq̇ = 0.0001, kτ = 0.01

– kclr = 300.0, kcfs = 1.0, kair pen = 40, kair rew = 5

– klift = 0.5, kup = 1.0

• Vectors:

– vu = Rz(θ)

[
0.2
0
−1.0

]
(yaw-rotated world vector)

– vf = RWB

[
1.0
0
0

]
(robot’s forward axis in world frame)

• Key variables:

– hgroundz,f : Height of foot f from ground plane

– hgroundz,target,f (t): Target foot height from gait generator
– Cf (t): Desired contact state (0=swing, 1=stance)
– H: Robot base height, τmax: Torque limits
– σs = 0.5: Torque limit safety margin

19

Table 4: List of Observations for the Dynamics Model and Actor in the Go2 Bipedal Task.

Observation Size Dyn. model Actor
linear velocity of the base 3 ✓

angular velocity of the base 3 ✓ ✓

projected gravity 3 ✓ ✓

joint positions 12 ✓ ✓

joint velocities 12 ✓ ✓

previous actions 12 ✓ ✓

clock inputs 4 ✓ ✓

joint torques 12 ✓

foot forces 4 ✓

foot heights 4 ✓

vf 3 ✓

vu 3 ✓

base height 1 ✓

20

A.4 Hyperparameters

Table 5: Shared Hyperparameters. Algorithms use these settings unless otherwise specified in the
environment-specific tables below.

PPO SAC DMO-BPTT DMO-SHAC DMO-SAPO

Num actors * * 256 * *
Horizon 32 32 16 16 16
Mini-epochs 5 8 1 16 16
Discount γ 0.99 0.99 0.99 0.99 0.99
TD/GAE λ 0.95 0.95 – 0.95 0.95
Actor lr 3e−4 * 3e−4 * 2e−3
Critic lr 3e−4 * 5e−4 * 5e−4
Dyn. model lr – – * * 3e−4
Entropy lr – * – – 5e−3
lr schedule KL(0.008) – linear linear linear
Optim type AdamW Adam Adam Adam AdamW
Optim (β1, β2) (0.9, 0.999) (0.7, 0.95) (0.7, 0.95) (0.7, 0.95) (0.7, 0.95)
Grad clip 0.5 0.5 1.0 1.0 1.0
Norm type LayerNorm LayerNorm LayerNorm LayerNorm LayerNorm
Act type ELU ELU ELU ELU SiLU
Actor σ(s) yes no no no yes
Num critics – 2 – – *
Critic τ – 0.995 – * –
Replay buffer – 106 – 106 106

Target entropyH – − dim(A)/2 – – −dim(A)/2
Init temperature – 1.0 – – 1.0
* Values vary by environment, see environment-specific tables.

Table 6: Environment-specific Hyperparameters for PPO.
Environment Num actors Minibatch size Actor MLP Critic MLP
Ant 2048 16384 (128,64,32) (128,64,32)
Hopper/Cheetah 1024 8192 (128,64,32) (128,64,32)
Humanoid 1024 8192 (256,128,64) (256,128,64)
SNUHumanoid 1024 8192 (512,512,256) (512,512,256)
Go2/Go2Bipedal 4096 32768 (256,128,64) (256,128,64)
AllegroHand 4096 32768 (400,400,200,100) (400,400,200,100)

Table 7: Environment-specific Hyperparameters for SAC.
Environment Actors Batch Actor lr Critic lr Entropy lr Actor MLP Critic MLP
Ant 128 4096 5e−4 5e−4 5e−3 (256,128,64) (256,128,64)
Hopper/Cheetah 64 2048 5e−4 5e−4 5e−3 (256,128,64) (256,128,64)
Humanoid 64 2048 3e−4 3e−4 2e−4 (512,256) (512,256)
SNUHumanoid 256 4096 3e−4 3e−4 2e−4 (512,512,512,256) (512,512,512,256)
Go2/Go2Bipedal/AllegroHand 64 2048 3e−4 3e−4 2e−4 (512,256) (512,256)

Table 8: Environment-specific Hyperparameters for DMO-SHAC.
Environment Actors Actor lr Critic lr Dyn. lr Critic τ Actor MLP Dyn. Model MLP
Ant/Cheetah 64 2e−3 2e−3 2e−3 0.2 (128,64,32) (512,512)
Hopper 256 2e−3 2e−4 2e−3 0.2 (128,64,32) (512,512)
Humanoid 64 2e−3 5e−4 3e−4 0.995 (256,128) (1792,1792)
SNUHumanoid 64 2e−3 5e−4 3e−4 0.995 (512,256) (1792,1792)
Go2 256 3e−4 5e−4 3e−4 0.2 (256,128,64) (1024,1024)

21

Table 9: DMO-SAPO Environment-specific Hyperparameters.
Environment Actors Num Critics Actor MLP Dyn. Model MLP
Go2Bipedal 512 10 (256,128,64) (1792,1792)
AllegroHand 128 2 (512,256) (1792,1792)

Hyperparameter Sources. Hyperparameters for PPO, SAC, and the SHAC part of DMO-SHAC
for Ant, Cheetah, Hopper, Humanoid, and SNUHumanoid were taken from [18]. Hyperparameters
for PPO and SAC for AllegroHand were taken from [14]. Hyperparameters for the SAPO part of
DMO-SAPO for the AllegroHand environment were from [19].

A.5 Comparative Summary of First-order Gradient Algorithms

Table 10: Comparison of first-order gradient RL algorithms along key features.
Algorithm Needs no diff. sim. Value bootstrap Parallel sim. Decoupling

SVG(∞) ✓ ✗ ✗ ✓
BPTT ✗ ✗ ✓ ✗
SHAC/SAPO ✗ ✓ ✓ ✗
PWM ✓ ✓ ✓ ✗
MAAC/Dreamer ✓ ✓ ✗ ✗
DMO ✓ ✓ ✓ ✓

22

	Introduction
	Related Work
	Method
	Background
	Implementation of DMO

	Experiments
	Experimental Setup
	Results and Analysis
	Ablative analysis

	Conclusion
	Appendix
	Algorithmic Details
	Critic learning
	DMO algorithm
	PyTorch Decoupling Implementation
	Reparameterization Trick and Analytical Policy Gradient

	Experimental Results
	Detailed Results Across Environments

	Go2 Environment Specifications
	Quadrupedal Task Reward and Observations
	Bipedal Task Reward and Observations

	Hyperparameters
	Comparative Summary of First-order Gradient Algorithms

