solver
NlpDescription.hpp
Go to the documentation of this file.
1 
9 #pragma once
10 
11 #include <iostream>
12 #include <Eigen/Dense>
13 
14 namespace solver
15 {
16 
17  // Nonlinear problem description
19  {
20  public:
21  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
22 
23  public:
24  NlpDescription(){};
25  virtual ~NlpDescription(){};
26 
27  // definition of problem size
28  virtual void getNlpParameters(int& n_vars, int& n_cons) = 0;
29 
30  // definition of problem box constraints
31  virtual void getNlpBounds(int n_vars, int n_cons, double* x_l, double* x_u, double* g_l, double* g_u) = 0;
32 
33  // definition of starting point
34  virtual void getStartingPoint(int n_vars, double* x) = 0;
35 
36  // definition of objective function
37  virtual double evaluateObjective(int n_vars, const double* x) = 0;
38 
39  // definition of constraints function
40  virtual void evaluateConstraintsVector(int n_vars, int n_cons, const double* x, double* constraints) = 0;
41 
42  // definition of how to process solution
43  virtual void processSolution(int n_vars, double objective_value, const double* x)
44  {
45  Eigen::Map<const Eigen::VectorXd> eig_x_const(&x[0], n_vars);
46  this->optimalVector() = eig_x_const;
47  this->optimalValue() = objective_value;
48  }
49 
50  double& optimalValue() { return eig_obj_; }
51  const double& optimalValue() const { return eig_obj_; }
52  Eigen::VectorXd& optimalVector() { return eig_opt_x_; }
53  const Eigen::VectorXd& optimalVector() const { return eig_opt_x_; }
54 
55  private:
56  double eig_obj_;
57  Eigen::VectorXd eig_opt_x_;
58  };
59 }
Definition: NlpDescription.hpp:18
Definition: Cone.hpp:20