17 template<
int Max_Ineq_Rows,
int Max_Eq_Rows,
int Num_OptVars>
18 RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::RtModel(YAML::Node params)
21 is_solution_valid_ =
false;
22 num_variables_optimized_ = Num_OptVars;
24 for (
int var_id=0; var_id<Num_OptVars; var_id++) {
25 full_to_opt_variable_index_[var_id] = var_id;
26 vars_.push_back(
solver::Var(vars_.size(), solver::VarType::Continuous, 0.0, 1.0, 0.0) );
30 template<
int Max_Ineq_Rows,
int Max_Eq_Rows,
int Num_OptVars>
31 void RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::initialize()
35 hqp_solver_.initialize();
36 is_solution_valid_ =
false;
37 hierarchies_without_slacks_.clear();
40 template<
int Max_Ineq_Rows,
int Max_Eq_Rows,
int Num_OptVars>
41 template <
typename Mat>
42 void RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::reduceColumns(Eigen::EigenBase<Mat>& mat)
const 44 #ifndef RTEIG_NO_ASSERTS 45 assert(mat.cols() == full_to_opt_variable_index_.size());
47 unsigned int first_empty_i=0;
48 for (; first_empty_i < full_to_opt_variable_index_.size(); ++first_empty_i) {
49 if (full_to_opt_variable_index_[first_empty_i] < 0)
54 unsigned int block_start_i=first_empty_i+1;
56 for (; block_start_i < full_to_opt_variable_index_.size(); ++block_start_i)
57 if (full_to_opt_variable_index_[block_start_i] >= 0)
61 if (block_start_i >= full_to_opt_variable_index_.size())
65 unsigned int block_end_i=block_start_i+1;
66 for (; block_end_i < full_to_opt_variable_index_.size(); ++block_end_i)
67 if (full_to_opt_variable_index_[block_end_i] < 0)
71 mat.derived().block(0, first_empty_i, mat.rows(),block_end_i-block_start_i) =
72 mat.derived().block(0, block_start_i, mat.rows(), block_end_i-block_start_i);
74 first_empty_i += block_end_i-block_start_i;
75 block_start_i = block_end_i;
80 template<
int Max_Ineq_Rows,
int Max_Eq_Rows,
int Num_OptVars>
81 template<
int Max_Rows,
typename Mat_Type,
typename Vec_Type>
82 void RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::appendRowsOfRank(
83 int rank_to_add,
const typename rt_solver::RtVector<Max_Rows>::i& ranks,
84 const Eigen::MatrixBase<Mat_Type>& subst_mat,
const Eigen::MatrixBase<Vec_Type>& subst_vec,
bool append_to_equalities,
int starting_column)
88 for (
int i=0; i<ranks.size(); ++i)
89 if (ranks[i] == rank_to_add)
92 if (0 == n_add_rows) {
return; }
96 if (append_to_equalities)
98 old_rows = next_eq_cost_mat_.rows();
99 rt_solver::RtVectorUtils::conservativeResize(next_eq_cost_vec_, old_rows+n_add_rows);
101 next_eq_cost_mat_.bottomRows(n_add_rows).setZero();
102 next_eq_cost_vec_.bottomRows(n_add_rows).setZero();
104 old_rows = next_ineq_cost_mat_.rows();
105 rt_solver::RtVectorUtils::conservativeResize(next_ineq_cost_vec_, old_rows+n_add_rows);
107 next_ineq_cost_mat_.bottomRows(n_add_rows).setZero();
108 next_ineq_cost_vec_.bottomRows(n_add_rows).setZero();
113 for (
int i=0; i<ranks.size(); ++i) {
114 if (ranks[i] == rank_to_add) {
115 if (append_to_equalities) {
116 next_eq_cost_mat_.block(old_rows+added_row, starting_column, 1, subst_mat.cols()) = subst_mat.row(i);
117 next_eq_cost_vec_(old_rows+added_row) = subst_vec(i);
119 next_ineq_cost_mat_.block(old_rows+added_row, starting_column, 1, subst_mat.cols()) = subst_mat.row(i);
120 next_ineq_cost_vec_(old_rows+added_row) = subst_vec(i);
128 template<
int Max_Ineq_Rows,
int Max_Eq_Rows,
int Num_OptVars>
129 template <
typename VecDer>
130 double RtModel< Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::inequalitySlack(Eigen::MatrixBase<VecDer>& dist) {
131 #ifndef RTEIG_NO_ASSERTS 132 assert(dist.cols() == 1 &&
"dist has to be a vector");
134 for (
int i=0;i<dist.rows();++i) { dist[i]<=0.0 ? dist[i]*=0.0 : dist[i]*=1.0; }
138 template<
int Max_Ineq_Rows,
int Max_Eq_Rows,
int Num_OptVars>
139 bool RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::solve()
141 n_solved_ranks_ = 0.0;
142 is_solution_valid_ =
true;
143 bool higher_ranks_left =
true;
144 bool problem_dofs_left =
true;
146 for (
int rank = 0; higher_ranks_left && problem_dofs_left && is_solution_valid_; rank++)
149 rt_solver::RtVectorUtils::resize(next_eq_cost_vec_, 0);
150 rt_solver::RtVectorUtils::resize(next_ineq_cost_vec_, 0);
155 if (hierarchies_without_slacks_.size()>0)
156 this->checkSlacknessOfHierarchy(rank);
159 higher_ranks_left = this->checkIfHigherRanksLeft(rank);
160 for (
unsigned int cst_id=0; cst_id<sub_cost_composers_.size(); cst_id++) {
161 sub_cost_composers_[cst_id]->addCostToHierarchy(rank);
162 if (sub_cost_composers_[cst_id]->maxRank() > rank)
163 higher_ranks_left =
true;
165 this->addCostsToHierarchy(rank);
167 for (
int r=0; r<next_eq_cost_mat_.rows(); r++) {
168 if (!next_eq_cost_mat_.row(r).allFinite() || !std::isfinite(next_eq_cost_vec_[r])) {
169 is_solution_valid_ =
false;
170 std::cout <<
"bad eq in rank " << rank <<
", row: " << r << std::endl;
174 for (
int r=0; r<next_ineq_cost_mat_.rows(); r++) {
175 if (!next_ineq_cost_mat_.row(r).allFinite() || !std::isfinite(next_ineq_cost_vec_[r])) {
176 is_solution_valid_ =
false;
177 std::cout <<
"bad ineq in rank " << rank <<
", row: " << r << std::endl;
181 reduceColumns(next_eq_cost_mat_);
182 reduceColumns(next_ineq_cost_mat_);
183 rt_solver::RtAffineUtils::removeZeroRows(next_eq_cost_mat_, next_eq_cost_vec_);
184 rt_solver::RtAffineUtils::removeZeroRows(next_ineq_cost_mat_, next_ineq_cost_vec_);
187 for (
unsigned int i = 0; i < sub_cost_composers_.size(); ++i) {
188 sub_cost_composers_[i]->addCostToHierarchyAfterReduction(rank);
189 if (sub_cost_composers_[i]->maxRank() > rank)
190 higher_ranks_left =
true;
193 if (rank == 0) { hqp_solver_.reset(num_variables_optimized_); }
195 if (hqp_solver_.solveNextTask(next_eq_cost_mat_, next_eq_cost_vec_,
196 next_ineq_cost_mat_, next_ineq_cost_vec_)) {
197 n_solved_ranks_ += 1;
198 }
else { is_solution_valid_ =
false; }
200 if (rank <
int(qp_dur_.size()) && rank <
int(svd_wait_.size()) ) {
201 qp_dur_[rank] = hqp_solver_.qpSolveDuration();
202 svd_wait_[rank] = hqp_solver_.qpWaitDuration();
204 problem_dofs_left = (hqp_solver_.nullspaceDimension() != 0);
208 for (
unsigned int i = 0; i < this->subCostComposers().size(); ++i)
209 this->subCostComposers()[i]->updateAfterSolutionFound();
211 return is_solution_valid_;
214 template<
int Max_Ineq_Rows,
int Max_Eq_Rows,
int Num_OptVars>
215 void RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::clean()
221 template<
int Max_Ineq_Rows,
int Max_Eq_Rows,
int Num_OptVars>
222 solver::Var RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::getVar(
const int var_id)
224 assert(var_id < Num_OptVars &&
"VarId exceeds max number of optimization variables available");
225 return vars_[var_id];
229 template<
int Max_Ineq_Rows,
int Max_Eq_Rows,
int Num_OptVars>
230 void RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::addLinConstr(
const solver::LinExpr& lhs,
const std::string sense,
const solver::LinExpr& rhs,
const int rank)
232 if (sense ==
"=") { leqcons_.push_back(std::make_tuple(rank, lhs-rhs)); }
233 else if (sense ==
"<") { lineqcons_.push_back(std::make_tuple(rank, lhs-rhs)); }
234 else if (sense ==
">") { lineqcons_.push_back(std::make_tuple(rank, rhs-lhs)); }
235 else {
throw std::runtime_error(
"Invalid sense on Linear Constraint"); }
238 template<
int Max_Ineq_Rows,
int Max_Eq_Rows,
int Num_OptVars>
239 bool RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::checkIfHigherRanksLeft(
const int rank)
241 for (
size_t leq_id=0; leq_id<leqcons_.size(); leq_id++)
242 if (std::get<0>(leqcons_[leq_id]) > rank) {
return true; }
243 for (
size_t lineq_id=0; lineq_id<lineqcons_.size(); lineq_id++)
244 if (std::get<0>(lineqcons_[lineq_id]) > rank) {
return true; }
249 template<
int Max_Ineq_Rows,
int Max_Eq_Rows,
int Num_OptVars>
255 for (
size_t row_id=0; row_id<leqcons_.size(); row_id++)
256 if (std::get<0>(leqcons_[row_id]) == rank_to_add) { n_add_rows++; }
258 if (n_add_rows > 0) {
260 int old_rows = next_eq_cost_mat_.rows();
261 rt_solver::RtVectorUtils::conservativeResize(next_eq_cost_vec_, old_rows+n_add_rows);
263 next_eq_cost_mat_.bottomRows(n_add_rows).setZero();
264 next_eq_cost_vec_.bottomRows(n_add_rows).setZero();
268 for (
size_t row_id=0; row_id<leqcons_.size(); row_id++)
269 if (std::get<0>(leqcons_[row_id]) == rank_to_add) {
270 next_eq_cost_vec_(old_rows+added_row) = std::get<1>(leqcons_[row_id]).getConstant();
271 for (
int var_id=0; var_id<(int)std::get<1>(leqcons_[row_id]).size(); var_id++)
272 next_eq_cost_mat_(old_rows+added_row, std::get<1>(leqcons_[row_id]).getVar(var_id).get(solver::SolverIntParam_ColNum)) = std::get<1>(leqcons_[row_id]).getCoeff(var_id);
275 assert(n_add_rows == added_row &&
"Incorrect number of appended linear equalities");
281 for (
size_t row_id=0; row_id<lineqcons_.size(); row_id++)
282 if (std::get<0>(lineqcons_[row_id]) == rank_to_add) { n_add_rows++; }
284 if (n_add_rows > 0) {
286 int old_rows = next_ineq_cost_mat_.rows();
287 rt_solver::RtVectorUtils::conservativeResize(next_ineq_cost_vec_, old_rows+n_add_rows);
289 next_ineq_cost_mat_.bottomRows(n_add_rows).setZero();
290 next_ineq_cost_vec_.bottomRows(n_add_rows).setZero();
294 for (
size_t row_id=0; row_id<lineqcons_.size(); row_id++)
295 if (std::get<0>(lineqcons_[row_id]) == rank_to_add) {
296 next_ineq_cost_vec_(old_rows+added_row) = std::get<1>(lineqcons_[row_id]).getConstant();
297 for (
int var_id=0; var_id<(int)std::get<1>(lineqcons_[row_id]).size(); var_id++)
298 next_ineq_cost_mat_(old_rows+added_row, std::get<1>(lineqcons_[row_id]).getVar(var_id).get(solver::SolverIntParam_ColNum)) = std::get<1>(lineqcons_[row_id]).getCoeff(var_id);
301 assert(n_add_rows == added_row &&
"Incorrect number of appended linear inequalities");
305 template<
int Max_Ineq_Rows,
int Max_Eq_Rows,
int Num_OptVars>
308 for (
size_t id=0;
id<hierarchies_without_slacks_.size();
id ++)
309 if (hierarchies_without_slacks_[
id] == rank)
310 hqp_solver_.applyIneqSlacks() =
false;
311 hqp_solver_.applyIneqSlacks() =
true;
314 template<
int Max_Ineq_Rows,
int Max_Eq_Rows,
int Num_OptVars>
317 for (
int leq_id=0; leq_id<leqcons_.size(); leq_id++) {
318 std::cout <<
" rank " << std::get<0>(leqcons_[leq_id])
319 <<
" cons " << std::get<1>(leqcons_[leq_id]) << std::endl;
322 for (
int lineq_id=0; lineq_id<lineqcons_.size(); lineq_id++) {
323 std::cout <<
" rank " << std::get<0>(lineqcons_[lineq_id])
324 <<
" cons " << std::get<1>(lineqcons_[lineq_id]) << std::endl;
static void resize(Eigen::MatrixBase< Derived > &mat, int rows, int cols)
! Resize matrix without memory allocation.
Definition: RtMatrix.hpp:133
void addCostsToHierarchy(const int rank_to_add)
Definition: RtModel.h:250
Helper class to define an optimization variable, used in the construction of linear and quadratic exp...
Definition: Var.hpp:36
static void conservativeResize(Eigen::MatrixBase< Derived > &mat, int rows, int cols)
! Resize matrix by keeping data untouched without memory allocation.
Definition: RtMatrix.hpp:118
Helper class to ease the construction of a linear expression (e.g.
Definition: Exprs.hpp:19