solver
RtModel.h
Go to the documentation of this file.
1 
10 #pragma once
11 
14 
15 namespace rt_solver {
16 
17  template<int Max_Ineq_Rows, int Max_Eq_Rows, int Num_OptVars>
18  RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::RtModel(YAML::Node params)
19  : hqp_solver_(params)
20  {
21  is_solution_valid_ = false;
22  num_variables_optimized_ = Num_OptVars;
23 
24  for (int var_id=0; var_id<Num_OptVars; var_id++) {
25  full_to_opt_variable_index_[var_id] = var_id;
26  vars_.push_back( solver::Var(vars_.size(), solver::VarType::Continuous, 0.0, 1.0, 0.0) );
27  }
28  }
29 
30  template<int Max_Ineq_Rows, int Max_Eq_Rows, int Num_OptVars>
31  void RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::initialize()
32  {
33  qp_dur_.resize(5);
34  svd_wait_.resize(5);
35  hqp_solver_.initialize();
36  is_solution_valid_ = false;
37  hierarchies_without_slacks_.clear();
38  }
39 
40  template<int Max_Ineq_Rows, int Max_Eq_Rows, int Num_OptVars>
41  template <typename Mat>
42  void RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::reduceColumns(Eigen::EigenBase<Mat>& mat) const
43  {
44  #ifndef RTEIG_NO_ASSERTS
45  assert(mat.cols() == full_to_opt_variable_index_.size());
46  #endif
47  unsigned int first_empty_i=0;
48  for (; first_empty_i < full_to_opt_variable_index_.size(); ++first_empty_i) {
49  if (full_to_opt_variable_index_[first_empty_i] < 0)
50  break;
51  }
52 
53  //found an empty row, now find the next nonempty row
54  unsigned int block_start_i=first_empty_i+1;
55  while (true) {
56  for (; block_start_i < full_to_opt_variable_index_.size(); ++block_start_i)
57  if (full_to_opt_variable_index_[block_start_i] >= 0)
58  break;
59 
60  // if the rest of the matrix is zero, stop
61  if (block_start_i >= full_to_opt_variable_index_.size())
62  break;
63 
64  // now find the end of the block
65  unsigned int block_end_i=block_start_i+1;
66  for (; block_end_i < full_to_opt_variable_index_.size(); ++block_end_i)
67  if (full_to_opt_variable_index_[block_end_i] < 0)
68  break;
69 
70  //now shift the block up
71  mat.derived().block(0, first_empty_i, mat.rows(),block_end_i-block_start_i) =
72  mat.derived().block(0, block_start_i, mat.rows(), block_end_i-block_start_i);
73 
74  first_empty_i += block_end_i-block_start_i;
75  block_start_i = block_end_i;
76  }
77  rt_solver::RtMatrixUtils::conservativeResize(mat.derived(), mat.rows(), first_empty_i);
78  }
79 
80  template<int Max_Ineq_Rows, int Max_Eq_Rows, int Num_OptVars>
81  template<int Max_Rows, typename Mat_Type, typename Vec_Type>
82  void RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::appendRowsOfRank(
83  int rank_to_add, const typename rt_solver::RtVector<Max_Rows>::i& ranks,
84  const Eigen::MatrixBase<Mat_Type>& subst_mat, const Eigen::MatrixBase<Vec_Type>& subst_vec, bool append_to_equalities, int starting_column)
85  {
86  // count how many rows we add in this rank
87  int n_add_rows = 0;
88  for (int i=0; i<ranks.size(); ++i)
89  if (ranks[i] == rank_to_add)
90  ++n_add_rows;
91 
92  if (0 == n_add_rows) { return; } // nothing to be done
93  else {
94  //extend the problem matrix by the amount of rows we need
95  int old_rows;
96  if (append_to_equalities)
97  {
98  old_rows = next_eq_cost_mat_.rows();
99  rt_solver::RtVectorUtils::conservativeResize(next_eq_cost_vec_, old_rows+n_add_rows);
100  rt_solver::RtMatrixUtils::conservativeResize(next_eq_cost_mat_, old_rows+n_add_rows, next_eq_cost_mat_.cols());
101  next_eq_cost_mat_.bottomRows(n_add_rows).setZero();
102  next_eq_cost_vec_.bottomRows(n_add_rows).setZero();
103  } else {
104  old_rows = next_ineq_cost_mat_.rows();
105  rt_solver::RtVectorUtils::conservativeResize(next_ineq_cost_vec_, old_rows+n_add_rows);
106  rt_solver::RtMatrixUtils::conservativeResize(next_ineq_cost_mat_, old_rows+n_add_rows, next_ineq_cost_mat_.cols());
107  next_ineq_cost_mat_.bottomRows(n_add_rows).setZero();
108  next_ineq_cost_vec_.bottomRows(n_add_rows).setZero();
109  }
110 
111  // add the rows from mat that correspond with the requested rank
112  int added_row = 0;
113  for (int i=0; i<ranks.size(); ++i) {
114  if (ranks[i] == rank_to_add) {
115  if (append_to_equalities) {
116  next_eq_cost_mat_.block(old_rows+added_row, starting_column, 1, subst_mat.cols()) = subst_mat.row(i);
117  next_eq_cost_vec_(old_rows+added_row) = subst_vec(i);
118  } else {
119  next_ineq_cost_mat_.block(old_rows+added_row, starting_column, 1, subst_mat.cols()) = subst_mat.row(i);
120  next_ineq_cost_vec_(old_rows+added_row) = subst_vec(i);
121  }
122  ++added_row;
123  }
124  }
125  }
126  }
127 
128  template<int Max_Ineq_Rows, int Max_Eq_Rows, int Num_OptVars>
129  template <typename VecDer>
130  double RtModel< Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::inequalitySlack(Eigen::MatrixBase<VecDer>& dist) {
131  #ifndef RTEIG_NO_ASSERTS
132  assert(dist.cols() == 1 && "dist has to be a vector");
133  #endif
134  for (int i=0;i<dist.rows();++i) { dist[i]<=0.0 ? dist[i]*=0.0 : dist[i]*=1.0; }
135  return dist.norm();
136  }
137 
138  template<int Max_Ineq_Rows, int Max_Eq_Rows, int Num_OptVars>
139  bool RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::solve()
140  {
141  n_solved_ranks_ = 0.0;
142  is_solution_valid_ = true;
143  bool higher_ranks_left = true;
144  bool problem_dofs_left = true;
145 
146  for (int rank = 0; higher_ranks_left && problem_dofs_left && is_solution_valid_; rank++)
147  {
148  // reset task costs
149  rt_solver::RtVectorUtils::resize(next_eq_cost_vec_, 0);
150  rt_solver::RtVectorUtils::resize(next_ineq_cost_vec_, 0);
151  rt_solver::RtMatrixUtils::resize(next_eq_cost_mat_, 0, Num_OptVars);
152  rt_solver::RtMatrixUtils::resize(next_ineq_cost_mat_, 0, Num_OptVars);
153 
154  // check if different slackness properties have been specified for hierarchies
155  if (hierarchies_without_slacks_.size()>0)
156  this->checkSlacknessOfHierarchy(rank);
157 
158  // ask composers of this rank to add their sub-costs
159  higher_ranks_left = this->checkIfHigherRanksLeft(rank);
160  for (unsigned int cst_id=0; cst_id<sub_cost_composers_.size(); cst_id++) {
161  sub_cost_composers_[cst_id]->addCostToHierarchy(rank);
162  if (sub_cost_composers_[cst_id]->maxRank() > rank)
163  higher_ranks_left = true;
164  }
165  this->addCostsToHierarchy(rank);
166 
167  for (int r=0; r<next_eq_cost_mat_.rows(); r++) {
168  if (!next_eq_cost_mat_.row(r).allFinite() || !std::isfinite(next_eq_cost_vec_[r])) {
169  is_solution_valid_ = false;
170  std::cout << "bad eq in rank " << rank << ", row: " << r << std::endl;
171  }
172  }
173 
174  for (int r=0; r<next_ineq_cost_mat_.rows(); r++) {
175  if (!next_ineq_cost_mat_.row(r).allFinite() || !std::isfinite(next_ineq_cost_vec_[r])) {
176  is_solution_valid_ = false;
177  std::cout << "bad ineq in rank " << rank << ", row: " << r << std::endl;
178  }
179  }
180 
181  reduceColumns(next_eq_cost_mat_);
182  reduceColumns(next_ineq_cost_mat_);
183  rt_solver::RtAffineUtils::removeZeroRows(next_eq_cost_mat_, next_eq_cost_vec_);
184  rt_solver::RtAffineUtils::removeZeroRows(next_ineq_cost_mat_, next_ineq_cost_vec_);
185 
186  // add sub costs that are already reduced internally
187  for (unsigned int i = 0; i < sub_cost_composers_.size(); ++i) {
188  sub_cost_composers_[i]->addCostToHierarchyAfterReduction(rank);
189  if (sub_cost_composers_[i]->maxRank() > rank)
190  higher_ranks_left = true;
191  }
192 
193  if (rank == 0) { hqp_solver_.reset(num_variables_optimized_); }
194 
195  if (hqp_solver_.solveNextTask(next_eq_cost_mat_, next_eq_cost_vec_,
196  next_ineq_cost_mat_, next_ineq_cost_vec_)) {
197  n_solved_ranks_ += 1;
198  } else { is_solution_valid_ = false; }
199 
200  if (rank < int(qp_dur_.size()) && rank < int(svd_wait_.size()) ) {
201  qp_dur_[rank] = hqp_solver_.qpSolveDuration();
202  svd_wait_[rank] = hqp_solver_.qpWaitDuration();
203  }
204  problem_dofs_left = (hqp_solver_.nullspaceDimension() != 0);
205  }
206 
207  //notify sub-composers of new solution
208  for (unsigned int i = 0; i < this->subCostComposers().size(); ++i)
209  this->subCostComposers()[i]->updateAfterSolutionFound();
210 
211  return is_solution_valid_;
212  }
213 
214  template<int Max_Ineq_Rows, int Max_Eq_Rows, int Num_OptVars>
215  void RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::clean()
216  {
217  leqcons_.clear();
218  lineqcons_.clear();
219  }
220 
221  template<int Max_Ineq_Rows, int Max_Eq_Rows, int Num_OptVars>
222  solver::Var RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::getVar(const int var_id)
223  {
224  assert(var_id < Num_OptVars && "VarId exceeds max number of optimization variables available");
225  return vars_[var_id];
226  }
227 
228  // Linear Constraint: left_hand_side [< = >] right_hand_side
229  template<int Max_Ineq_Rows, int Max_Eq_Rows, int Num_OptVars>
230  void RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::addLinConstr(const solver::LinExpr& lhs, const std::string sense, const solver::LinExpr& rhs, const int rank)
231  {
232  if (sense == "=") { leqcons_.push_back(std::make_tuple(rank, lhs-rhs)); }
233  else if (sense == "<") { lineqcons_.push_back(std::make_tuple(rank, lhs-rhs)); }
234  else if (sense == ">") { lineqcons_.push_back(std::make_tuple(rank, rhs-lhs)); }
235  else { throw std::runtime_error("Invalid sense on Linear Constraint"); }
236  }
237 
238  template<int Max_Ineq_Rows, int Max_Eq_Rows, int Num_OptVars>
239  bool RtModel<Max_Ineq_Rows, Max_Eq_Rows, Num_OptVars>::checkIfHigherRanksLeft(const int rank)
240  {
241  for (size_t leq_id=0; leq_id<leqcons_.size(); leq_id++)
242  if (std::get<0>(leqcons_[leq_id]) > rank) { return true; }
243  for (size_t lineq_id=0; lineq_id<lineqcons_.size(); lineq_id++)
244  if (std::get<0>(lineqcons_[lineq_id]) > rank) { return true; }
245 
246  return false;
247  }
248 
249  template<int Max_Ineq_Rows, int Max_Eq_Rows, int Num_OptVars>
251  {
253  // count how many rows we add in this rank
254  int n_add_rows = 0;
255  for (size_t row_id=0; row_id<leqcons_.size(); row_id++)
256  if (std::get<0>(leqcons_[row_id]) == rank_to_add) { n_add_rows++; }
257 
258  if (n_add_rows > 0) {
259  // extend the problem matrix by the amount of rows we need
260  int old_rows = next_eq_cost_mat_.rows();
261  rt_solver::RtVectorUtils::conservativeResize(next_eq_cost_vec_, old_rows+n_add_rows);
262  rt_solver::RtMatrixUtils::conservativeResize(next_eq_cost_mat_, old_rows+n_add_rows, next_eq_cost_mat_.cols());
263  next_eq_cost_mat_.bottomRows(n_add_rows).setZero();
264  next_eq_cost_vec_.bottomRows(n_add_rows).setZero();
265 
266  // add the rows from mat that correspond with the requested rank
267  int added_row = 0;
268  for (size_t row_id=0; row_id<leqcons_.size(); row_id++)
269  if (std::get<0>(leqcons_[row_id]) == rank_to_add) {
270  next_eq_cost_vec_(old_rows+added_row) = std::get<1>(leqcons_[row_id]).getConstant();
271  for (int var_id=0; var_id<(int)std::get<1>(leqcons_[row_id]).size(); var_id++)
272  next_eq_cost_mat_(old_rows+added_row, std::get<1>(leqcons_[row_id]).getVar(var_id).get(solver::SolverIntParam_ColNum)) = std::get<1>(leqcons_[row_id]).getCoeff(var_id);
273  added_row++;
274  }
275  assert(n_add_rows == added_row && "Incorrect number of appended linear equalities");
276  }
277 
279  // count how many rows we add in this rank
280  n_add_rows = 0;
281  for (size_t row_id=0; row_id<lineqcons_.size(); row_id++)
282  if (std::get<0>(lineqcons_[row_id]) == rank_to_add) { n_add_rows++; }
283 
284  if (n_add_rows > 0) {
285  // extend the problem matrix by the amount of rows we need
286  int old_rows = next_ineq_cost_mat_.rows();
287  rt_solver::RtVectorUtils::conservativeResize(next_ineq_cost_vec_, old_rows+n_add_rows);
288  rt_solver::RtMatrixUtils::conservativeResize(next_ineq_cost_mat_, old_rows+n_add_rows, next_ineq_cost_mat_.cols());
289  next_ineq_cost_mat_.bottomRows(n_add_rows).setZero();
290  next_ineq_cost_vec_.bottomRows(n_add_rows).setZero();
291 
292  // add the rows from mat that correspond with the requested rank
293  int added_row = 0;
294  for (size_t row_id=0; row_id<lineqcons_.size(); row_id++)
295  if (std::get<0>(lineqcons_[row_id]) == rank_to_add) {
296  next_ineq_cost_vec_(old_rows+added_row) = std::get<1>(lineqcons_[row_id]).getConstant();
297  for (int var_id=0; var_id<(int)std::get<1>(lineqcons_[row_id]).size(); var_id++)
298  next_ineq_cost_mat_(old_rows+added_row, std::get<1>(lineqcons_[row_id]).getVar(var_id).get(solver::SolverIntParam_ColNum)) = std::get<1>(lineqcons_[row_id]).getCoeff(var_id);
299  added_row++;
300  }
301  assert(n_add_rows == added_row && "Incorrect number of appended linear inequalities");
302  }
303  }
304 
305  template<int Max_Ineq_Rows, int Max_Eq_Rows, int Num_OptVars>
307  {
308  for (size_t id=0; id<hierarchies_without_slacks_.size(); id ++)
309  if (hierarchies_without_slacks_[id] == rank)
310  hqp_solver_.applyIneqSlacks() = false;
311  hqp_solver_.applyIneqSlacks() = true;
312  }
313 
314  template<int Max_Ineq_Rows, int Max_Eq_Rows, int Num_OptVars>
316  {
317  for (int leq_id=0; leq_id<leqcons_.size(); leq_id++) {
318  std::cout << " rank " << std::get<0>(leqcons_[leq_id])
319  << " cons " << std::get<1>(leqcons_[leq_id]) << std::endl;
320  }
321 
322  for (int lineq_id=0; lineq_id<lineqcons_.size(); lineq_id++) {
323  std::cout << " rank " << std::get<0>(lineqcons_[lineq_id])
324  << " cons " << std::get<1>(lineqcons_[lineq_id]) << std::endl;
325  }
326  }
327 
328 }
Definition: Var.hpp:17
static void resize(Eigen::MatrixBase< Derived > &mat, int rows, int cols)
! Resize matrix without memory allocation.
Definition: RtMatrix.hpp:133
Definition: Var.hpp:14
void addCostsToHierarchy(const int rank_to_add)
Definition: RtModel.h:250
Helper class to define an optimization variable, used in the construction of linear and quadratic exp...
Definition: Var.hpp:36
static void conservativeResize(Eigen::MatrixBase< Derived > &mat, int rows, int cols)
! Resize matrix by keeping data untouched without memory allocation.
Definition: RtMatrix.hpp:118
Helper class to ease the construction of a linear expression (e.g.
Definition: Exprs.hpp:19