17 template<
int All_A_Rows,
int Max_Num_Vars,
int Max_B_Rows>
18 const int RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::num_max_ranks_;
21 template<
int All_A_Rows,
int Max_Num_Vars,
int Max_B_Rows>
22 RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::RtHQPSolver(YAML::Node params)
23 : qp_solver_(), qp_solver_interface_(qp_solver_)
26 inequality_relaxation_ = (params[
"ineq_relax"] ? params[
"ineq_relax"].as<
double>() : 1.e-6);
27 eq_condition_threash_ = (params[
"hsol_max_eq_cond"] ? params[
"hsol_max_eq_cond"].as<
double>() : 1.e8);
28 diag_addition_for_psd_hessian_ = (params[
"psd_hessian_diag"] ? params[
"psd_hessian_diag"].as<
double>() : 1.e-8);
31 template<
int All_A_Rows,
int Max_Num_Vars,
int Max_B_Rows>
32 RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::~RtHQPSolver()
34 stopSVD2ProblemConverter();
38 template<
int All_A_Rows,
int Max_Num_Vars,
int Max_B_Rows>
39 void RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::initialize()
41 is_svd_computed_ =
true;
42 apply_ineq_slacks_ =
true;
44 for (
int rank_id=0; rank_id<num_max_ranks_; rank_id++)
47 stopSVD2ProblemConverter();
48 stop_svd2problem_converter_ =
false;
49 svd2problem_converter_thread_.reset(
new boost::thread(boost::bind( &RtHQPSolver<
50 All_A_Rows, Max_Num_Vars, Max_B_Rows>::doSVDComputations,
this )) );
54 template<
int All_A_Rows,
int Max_Num_Vars,
int Max_B_Rows>
55 void RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::doSVDComputations()
57 while (!stop_svd2problem_converter_) {
60 while (!stop_svd2problem_converter_ && is_svd_computed_) { problem2svd_converter_.wait(mutex_); }
61 if (stop_svd2problem_converter_) { mutex_.unlock();
break; }
63 if(B_Nprev_.rows() != 0) {
64 svd_B_Nprev_.compute(B_Nprev_, Eigen::ComputeFullV);
65 RtMatrixUtils::computeNullspaceMap(B_Nprev_, K_, svd_B_Nprev_, eq_condition_threash_);
66 prev_K_[cur_rank_] = K_;
71 is_svd_computed_ =
true;
72 svd2problem_converter_.broadcast();
77 template<
int All_A_Rows,
int Max_Num_Vars,
int Max_B_Rows>
78 void RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::stopSVD2ProblemConverter()
80 if(svd2problem_converter_thread_ != NULL)
83 stop_svd2problem_converter_ =
true;
84 problem2svd_converter_.broadcast();
86 svd2problem_converter_thread_->join();
91 template<
int All_A_Rows,
int Max_Num_Vars,
int Max_B_Rows>
92 void RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::reset(
int num_vars)
96 is_svd_computed_ =
true;
97 RtMatrixUtils::setIdentity(K_, num_vars);
101 RtVectorUtils::resize(ahat_, 0);
102 RtVectorUtils::resize(zopt_, 0);
103 RtVectorUtils::resize(wopt_, 0);
104 RtVectorUtils::setZero(xopt_, num_vars);
106 RtMatrixUtils::setIdentity(Nprev_, num_vars);
110 template<
int All_A_Rows,
int Max_Num_Vars,
int Max_B_Rows>
111 template<
typename EqMatDer,
typename EqVecDer,
typename IneqMatDer,
typename IneqVecDer>
112 bool RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::solveNextTask(
113 const Eigen::MatrixBase<EqMatDer>& eq_mat,
const Eigen::MatrixBase<EqVecDer>& eq_vec,
114 const Eigen::MatrixBase<IneqMatDer>& ineq_mat,
const Eigen::MatrixBase<IneqVecDer>& ineq_vec)
116 #ifndef RTEIG_NO_ASSERTS 117 assert(eq_mat.rows() <= Max_B_Rows &&
"HierarchicalTask exceeds max number of equality constraints!");
118 assert(eq_mat.rows() == 0 || (eq_mat.cols() == numVars() &&
"HierarchicalTask has wrong number of columns!"));
119 assert(ineq_mat.rows() == 0 || (ineq_mat.cols() == numVars() &&
"HierarchicalTask has wrong number of columns!"));
120 assert(Ahat_.rows() + ineq_mat.rows() <= All_A_Rows &&
"HierarchicalTask exceeds max number of inequality constraints!");
123 if (eq_mat.rows() == 0 && ineq_mat.rows() == 0) {
return true; }
129 if (K_.cols() == 0 && ineq_mat.rows() == 0) { mutex_.unlock();
return true; }
132 if(Nprev_.cols() == K_.rows()) { Nprev_ *= K_; }
133 const int dim_z = Nprev_.cols();
134 const int dim_w = ineq_mat.rows();
141 if (ahat_.rows() != 0)
143 #ifndef RTEIG_NO_ASSERTS 144 if (Ahat_.cols() != zopt_.rows()) { assert(Ahat_.cols() == zopt_.rows()); }
146 ahat_ += Ahat_ * zopt_;
147 for (
int id=0;
id<ahat_.size();
id++)
148 if(ahat_[
id] >= -inequality_relaxation_)
149 ahat_[id] = -inequality_relaxation_;
151 if (wopt_.rows() != 0)
152 ahat_.bottomRows(wopt_.rows()) += wopt_;
160 if (ineq_mat.rows() != 0) { RtVectorUtils::append(ahat_, ineq_mat * xopt_ + ineq_vec); }
163 if(Ahat_.cols() == K_.rows()) { Ahat_ *= K_; }
166 if (ineq_mat.rows() != 0) { RtMatrixUtils::append(Ahat_, ineq_mat * Nprev_); }
173 if (apply_ineq_slacks_) { qp_solver_interface_.reset(dim_z + dim_w, 0, Ahat_.rows()); }
174 else { qp_solver_interface_.reset(dim_z, 0, Ahat_.rows()); }
175 qp_solver_interface_.qp_properties_ |= QpSolverInterface::ePP_MightZeroIneqs;
178 if (eq_mat.rows() != 0)
180 B_Nprev_ = eq_mat * Nprev_;
181 RtQuadraticUtils::addFromNorm(qp_solver_interface_.objectiveQuadPart().topLeftCorner(dim_z, dim_z),
182 qp_solver_interface_.objectiveLinPart().topRows(dim_z), B_Nprev_,
183 eq_vec + eq_mat * xopt_);
187 is_svd_computed_ =
false;
188 problem2svd_converter_.broadcast();
192 if (dim_w != 0 && apply_ineq_slacks_) { qp_solver_interface_.objectiveQuadPart().block(dim_z, dim_z, dim_w, dim_w).setIdentity(); }
195 qp_solver_interface_.objectiveQuadPart().diagonal().array() += diag_addition_for_psd_hessian_;
198 if (Ahat_.rows() != 0)
200 if(apply_ineq_slacks_) {
201 typename RtMatrix<All_A_Rows, Max_Num_Vars + All_A_Rows>::d ineq_mat_slack;
202 RtMatrixUtils::setZero(ineq_mat_slack, Ahat_.rows(), dim_z + dim_w);
203 ineq_mat_slack.leftCols(dim_z) = Ahat_;
204 ineq_mat_slack.bottomRightCorner(dim_w, dim_w).setIdentity();
205 RtAffineUtils::appendAtColumn(qp_solver_interface_.ineqConstraintsMat(), qp_solver_interface_.ineqConstraintsVec(), ineq_mat_slack, ahat_, 0);
212 if(apply_ineq_slacks_)
214 boost::posix_time::ptime wait_start(boost::posix_time::microsec_clock::local_time());
215 try { qp_solver_interface_.optimize(); }
216 catch (...) { std::cout <<
"Qp solver failed" << std::endl; }
218 boost::posix_time::ptime wait_end(boost::posix_time::microsec_clock::local_time());
219 boost::posix_time::time_duration dur = wait_end - wait_start;
220 qpsolve_duration_ = dur.total_microseconds()/1000000.0;
222 #ifndef RTEIG_NO_ASSERTS 223 assert(((!qp_solver_interface_.isOptimized()) || (qp_solver_interface_.isOptimized() && qp_solver_interface_.checkSolution(
false))) &&
"Hierarchical task could not be solved");
228 boost::posix_time::ptime wait_start(boost::posix_time::microsec_clock::local_time());
230 while (!is_svd_computed_) { svd2problem_converter_.wait(mutex_); }
233 boost::posix_time::ptime wait_end(boost::posix_time::microsec_clock::local_time());
234 boost::posix_time::time_duration dur = wait_end - wait_start;
235 wait_duration_ = dur.total_microseconds()/1000000.0;
240 if (!apply_ineq_slacks_) { zopt_ = -eq_mat.transpose()*(eq_mat*eq_mat.transpose()).inverse()*eq_vec; }
242 if (qp_solver_interface_.isOptimized()) { zopt_ = qp_solver_interface_.solution().topRows(dim_z); }
243 else { RtVectorUtils::setZero(zopt_, dim_z); }
245 xopt_ += Nprev_ * zopt_;
247 if(apply_ineq_slacks_ && qp_solver_interface_.isOptimized()) {
248 RtVectorUtils::resize(wopt_, dim_w);
249 wopt_ = qp_solver_interface_.solution().segment(dim_z, dim_w);
251 RtVectorUtils::setZero(wopt_, dim_w);
255 return qp_solver_interface_.isOptimized() || !apply_ineq_slacks_;
static void resize(Eigen::MatrixBase< Derived > &mat, int rows, int cols)
! Resize matrix without memory allocation.
Definition: RtMatrix.hpp:133
static void appendAtColumn(Eigen::MatrixBase< AffMatDerived > &aff_mat, Eigen::MatrixBase< AffVecDerived > &aff_vec, const Eigen::MatrixBase< SubstMatDerived > &subst_mat, int starting_column)
! Append an affine mapping at the end of another one starting from a certain column.
Definition: RtMatrix.hpp:450