solver
RtHQPSolver.h
Go to the documentation of this file.
1 
10 #pragma once
11 
13 
14 namespace rt_solver {
15 
16  // helper variable to define max number of ranks possible in the hierarchy
17  template<int All_A_Rows, int Max_Num_Vars, int Max_B_Rows>
18  const int RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::num_max_ranks_;
19 
20  // constructor and destructor
21  template<int All_A_Rows, int Max_Num_Vars, int Max_B_Rows>
22  RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::RtHQPSolver(YAML::Node params)
23  : qp_solver_(), qp_solver_interface_(qp_solver_)
24  {
25  reset(Max_Num_Vars);
26  inequality_relaxation_ = (params["ineq_relax"] ? params["ineq_relax"].as<double>() : 1.e-6);
27  eq_condition_threash_ = (params["hsol_max_eq_cond"] ? params["hsol_max_eq_cond"].as<double>() : 1.e8);
28  diag_addition_for_psd_hessian_ = (params["psd_hessian_diag"] ? params["psd_hessian_diag"].as<double>() : 1.e-8);
29  }
30 
31  template<int All_A_Rows, int Max_Num_Vars, int Max_B_Rows>
32  RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::~RtHQPSolver()
33  {
34  stopSVD2ProblemConverter();
35  }
36 
37  // initialization function
38  template<int All_A_Rows, int Max_Num_Vars, int Max_B_Rows>
39  void RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::initialize()
40  {
41  is_svd_computed_ = true;
42  apply_ineq_slacks_ = true;
43 
44  for (int rank_id=0; rank_id<num_max_ranks_; rank_id++)
45  RtMatrixUtils::resize(prev_K_[rank_id], Max_Num_Vars, 0);
46 
47  stopSVD2ProblemConverter();
48  stop_svd2problem_converter_ = false;
49  svd2problem_converter_thread_.reset(new boost::thread(boost::bind( &RtHQPSolver<
50  All_A_Rows, Max_Num_Vars, Max_B_Rows>::doSVDComputations, this )) );
51  }
52 
53  // computation of singular value decompositions
54  template<int All_A_Rows, int Max_Num_Vars, int Max_B_Rows>
55  void RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::doSVDComputations()
56  {
57  while (!stop_svd2problem_converter_) {
58  // wait until svd is required
59  mutex_.lock();
60  while (!stop_svd2problem_converter_ && is_svd_computed_) { problem2svd_converter_.wait(mutex_); }
61  if (stop_svd2problem_converter_) { mutex_.unlock(); break; }
62 
63  if(B_Nprev_.rows() != 0) {
64  svd_B_Nprev_.compute(B_Nprev_, Eigen::ComputeFullV);
65  RtMatrixUtils::computeNullspaceMap(B_Nprev_, K_, svd_B_Nprev_, eq_condition_threash_);
66  prev_K_[cur_rank_] = K_;
67  }
68  cur_rank_++;
69 
70  // notify main thread that svd is available now
71  is_svd_computed_ = true;
72  svd2problem_converter_.broadcast();
73  mutex_.unlock();
74  }
75  }
76 
77  template<int All_A_Rows, int Max_Num_Vars, int Max_B_Rows>
78  void RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::stopSVD2ProblemConverter()
79  {
80  if(svd2problem_converter_thread_ != NULL)
81  {
82  mutex_.lock();
83  stop_svd2problem_converter_ = true;
84  problem2svd_converter_.broadcast();
85  mutex_.unlock();
86  svd2problem_converter_thread_->join();
87  }
88  }
89 
90  // solver reset
91  template<int All_A_Rows, int Max_Num_Vars, int Max_B_Rows>
92  void RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::reset(int num_vars)
93  {
94  mutex_.lock();
95  cur_rank_ = 0;
96  is_svd_computed_ = true;
97  RtMatrixUtils::setIdentity(K_, num_vars);
98  RtMatrixUtils::resize(B_Nprev_, 0, num_vars);
99  mutex_.unlock();
100 
101  RtVectorUtils::resize(ahat_, 0);
102  RtVectorUtils::resize(zopt_, 0);
103  RtVectorUtils::resize(wopt_, 0);
104  RtVectorUtils::setZero(xopt_, num_vars);
105  RtMatrixUtils::resize(Ahat_, 0, num_vars);
106  RtMatrixUtils::setIdentity(Nprev_, num_vars);
107  }
108 
109  // main function to solve a hierarchy
110  template<int All_A_Rows, int Max_Num_Vars, int Max_B_Rows>
111  template<typename EqMatDer, typename EqVecDer, typename IneqMatDer, typename IneqVecDer>
112  bool RtHQPSolver<All_A_Rows, Max_Num_Vars, Max_B_Rows>::solveNextTask(
113  const Eigen::MatrixBase<EqMatDer>& eq_mat, const Eigen::MatrixBase<EqVecDer>& eq_vec,
114  const Eigen::MatrixBase<IneqMatDer>& ineq_mat, const Eigen::MatrixBase<IneqVecDer>& ineq_vec)
115  {
116  #ifndef RTEIG_NO_ASSERTS
117  assert(eq_mat.rows() <= Max_B_Rows && "HierarchicalTask exceeds max number of equality constraints!");
118  assert(eq_mat.rows() == 0 || (eq_mat.cols() == numVars() && "HierarchicalTask has wrong number of columns!"));
119  assert(ineq_mat.rows() == 0 || (ineq_mat.cols() == numVars() && "HierarchicalTask has wrong number of columns!"));
120  assert(Ahat_.rows() + ineq_mat.rows() <= All_A_Rows && "HierarchicalTask exceeds max number of inequality constraints!");
121  #endif
122 
123  if (eq_mat.rows() == 0 && ineq_mat.rows() == 0) { return true; }
124 
125  // wait until svd is computed
126  mutex_.lock();
127 
128  // use svd
129  if (K_.cols() == 0 && ineq_mat.rows() == 0) { mutex_.unlock(); return true; }
130 
131  //compute nullspace mapping of previous B_Nprev_
132  if(Nprev_.cols() == K_.rows()) { Nprev_ *= K_; }
133  const int dim_z = Nprev_.cols();
134  const int dim_w = ineq_mat.rows();
135 
136  /*
137  * First Set of Updates
138  */
139 
140  //update kernel_to_ineqs vector with previous results
141  if (ahat_.rows() != 0)
142  {
143  #ifndef RTEIG_NO_ASSERTS
144  if (Ahat_.cols() != zopt_.rows()) { assert(Ahat_.cols() == zopt_.rows()); }
145  #endif
146  ahat_ += Ahat_ * zopt_;
147  for (int id=0; id<ahat_.size(); id++)
148  if(ahat_[id] >= -inequality_relaxation_)
149  ahat_[id] = -inequality_relaxation_;
150 
151  if (wopt_.rows() != 0) //previous task had inequality constraints
152  ahat_.bottomRows(wopt_.rows()) += wopt_;
153  }
154 
155  /*
156  * Second Set of Updates
157  */
158 
159  //update kernel_to_ineqs vector with new inequalities
160  if (ineq_mat.rows() != 0) { RtVectorUtils::append(ahat_, ineq_mat * xopt_ + ineq_vec); }
161 
162  //update kernel_to_ineqs matrix with previous results
163  if(Ahat_.cols() == K_.rows()) { Ahat_ *= K_; }
164 
165  //update kernel_to_ineqs mapping with new inequalities
166  if (ineq_mat.rows() != 0) { RtMatrixUtils::append(Ahat_, ineq_mat * Nprev_); }
167 
168  /*
169  * Construct and solve the problem
170  */
171 
172  // reset solver
173  if (apply_ineq_slacks_) { qp_solver_interface_.reset(dim_z + dim_w, 0, Ahat_.rows()); }
174  else { qp_solver_interface_.reset(dim_z, 0, Ahat_.rows()); }
175  qp_solver_interface_.qp_properties_ |= QpSolverInterface::ePP_MightZeroIneqs;
176 
177 
178  if (eq_mat.rows() != 0)
179  {
180  B_Nprev_ = eq_mat * Nprev_;
181  RtQuadraticUtils::addFromNorm(qp_solver_interface_.objectiveQuadPart().topLeftCorner(dim_z, dim_z),
182  qp_solver_interface_.objectiveLinPart().topRows(dim_z), B_Nprev_,
183  eq_vec + eq_mat * xopt_);
184  }
185 
186  // notify problem2svd_converter that it can proceed
187  is_svd_computed_ = false;
188  problem2svd_converter_.broadcast();
189  mutex_.unlock();
190 
191 
192  if (dim_w != 0 && apply_ineq_slacks_) { qp_solver_interface_.objectiveQuadPart().block(dim_z, dim_z, dim_w, dim_w).setIdentity(); }
193 
194  // add slack on diagonal of hessian to make it positive definite
195  qp_solver_interface_.objectiveQuadPart().diagonal().array() += diag_addition_for_psd_hessian_;
196 
197  // setup inequalities
198  if (Ahat_.rows() != 0)
199  {
200  if(apply_ineq_slacks_) {
201  typename RtMatrix<All_A_Rows, Max_Num_Vars + All_A_Rows>::d ineq_mat_slack;
202  RtMatrixUtils::setZero(ineq_mat_slack, Ahat_.rows(), dim_z + dim_w);
203  ineq_mat_slack.leftCols(dim_z) = Ahat_;
204  ineq_mat_slack.bottomRightCorner(dim_w, dim_w).setIdentity();
205  RtAffineUtils::appendAtColumn(qp_solver_interface_.ineqConstraintsMat(), qp_solver_interface_.ineqConstraintsVec(), ineq_mat_slack, ahat_, 0);
206  } else {
207  RtAffineUtils::appendAtColumn(qp_solver_interface_.ineqConstraintsMat(), qp_solver_interface_.ineqConstraintsVec(), Ahat_, ahat_, 0);
208  }
209  }
210 
211  // solve
212  if(apply_ineq_slacks_)
213  {
214  boost::posix_time::ptime wait_start(boost::posix_time::microsec_clock::local_time());
215  try { qp_solver_interface_.optimize(); }
216  catch (...) { std::cout << "Qp solver failed" << std::endl; }
217 
218  boost::posix_time::ptime wait_end(boost::posix_time::microsec_clock::local_time());
219  boost::posix_time::time_duration dur = wait_end - wait_start;
220  qpsolve_duration_ = dur.total_microseconds()/1000000.0;
221 
222  #ifndef RTEIG_NO_ASSERTS
223  assert(((!qp_solver_interface_.isOptimized()) || (qp_solver_interface_.isOptimized() && qp_solver_interface_.checkSolution(false))) && "Hierarchical task could not be solved");
224  #endif
225  }
226 
227  // synchronize with svd computation
228  boost::posix_time::ptime wait_start(boost::posix_time::microsec_clock::local_time());
229  mutex_.lock();
230  while (!is_svd_computed_) { svd2problem_converter_.wait(mutex_); }
231  mutex_.unlock();
232 
233  boost::posix_time::ptime wait_end(boost::posix_time::microsec_clock::local_time());
234  boost::posix_time::time_duration dur = wait_end - wait_start;
235  wait_duration_ = dur.total_microseconds()/1000000.0;
236 
237  /*
238   * Update the solution
239   */
240  if (!apply_ineq_slacks_) { zopt_ = -eq_mat.transpose()*(eq_mat*eq_mat.transpose()).inverse()*eq_vec; }
241  else {
242  if (qp_solver_interface_.isOptimized()) { zopt_ = qp_solver_interface_.solution().topRows(dim_z); }
243  else { RtVectorUtils::setZero(zopt_, dim_z); }
244  }
245  xopt_ += Nprev_ * zopt_;
246  if (dim_w != 0) {
247  if(apply_ineq_slacks_ && qp_solver_interface_.isOptimized()) {
248  RtVectorUtils::resize(wopt_, dim_w);
249  wopt_ = qp_solver_interface_.solution().segment(dim_z, dim_w);
250  } else {
251  RtVectorUtils::setZero(wopt_, dim_w);
252  }
253  }
254 
255  return qp_solver_interface_.isOptimized() || !apply_ineq_slacks_;
256  }
257 
258 }
static void resize(Eigen::MatrixBase< Derived > &mat, int rows, int cols)
! Resize matrix without memory allocation.
Definition: RtMatrix.hpp:133
static void appendAtColumn(Eigen::MatrixBase< AffMatDerived > &aff_mat, Eigen::MatrixBase< AffVecDerived > &aff_vec, const Eigen::MatrixBase< SubstMatDerived > &subst_mat, int starting_column)
! Append an affine mapping at the end of another one starting from a certain column.
Definition: RtMatrix.hpp:450
Definition: Var.hpp:14