16 template<
int nVars,
int nEqCon,
int nIneqCon>
21 RtQPSolver(): solver_return_(std::numeric_limits<double>::infinity())
23 cleanup_ineqs_ =
false;
24 is_inverse_provided_ =
false;
31 if (BaseClass::objectiveQuadPart().rows() == 0) {
return true; }
32 solver_return_ =
solveQP(BaseClass::objectiveQuadPart(),
33 BaseClass::objectiveLinPart(), BaseClass::eqConstraintsMat(),
34 BaseClass::eqConstraintsVec(), BaseClass::ineqConstraintsMat(),
35 BaseClass::ineqConstraintsVec(), BaseClass::solution());
39 bool isOptimized()
const {
return solver_return_ != std::numeric_limits<double>::infinity(); }
49 RtMatrixUtils::setZero(Hessian_factor_inv_, nVars, nVars);
50 solver_return_ = std::numeric_limits<double>::infinity();
52 inline void reset(
int dim_qp,
int num_eq,
int num_ineq)
54 BaseClass::reset(dim_qp, num_eq, num_ineq);
55 RtMatrixUtils::setZero(Hessian_factor_inv_, dim_qp, dim_qp);
56 solver_return_ = std::numeric_limits<double>::infinity();
61 double solver_return_;
62 bool is_inverse_provided_;
64 Eigen::LLT<typename RtMatrix<nVars,nVars>::d,Eigen::Lower> chol_;
67 template<
typename Scalar>
68 inline Scalar distance(Scalar a, Scalar b)
75 return a1 * std::sqrt(1.0 + t * t);
78 return b1 * std::sqrt(1.0 + t * t);
80 return a1 * std::sqrt(2.0);
84 inline void computeD(
typename RtVector<nVars>::d & d,
86 { d = J.adjoint() * np; }
88 inline void updateZ(
typename RtVector<nVars>::d & z,
90 const typename RtVector<nVars>::d & d,
int iq)
91 { z = J.rightCols(J.cols()-iq) * d.tail(J.cols()-iq); }
94 typename RtVector<nIneqCon+nEqCon>::d& r,
const typename RtVector<nVars>::d& d,
int iq)
95 { r.head(iq)= R.topLeftCorner(iq,iq).template triangularView<Eigen::Upper>().solve(d.head(iq)); }
98 inline bool addConstraint(
100 typename RtVector<nVars>::d & d,
int& iq,
double& R_norm)
105 double cc, ss, h, t1, t2, xny;
109 for (j=n-1; j>=iq+1; j--)
120 h = distance(cc, ss);
134 xny = ss / (1.0 + cc);
135 for (k = 0; k < n; k++)
139 J(k,j - 1) = t1 * cc + t2 * ss;
140 J(k,j) = xny * (t1 + J(k,j - 1)) - t2;
148 R.col(iq-1).head(iq) = d.head(iq);
149 if (std::abs(d(iq - 1)) <= std::numeric_limits<double>::epsilon() * R_norm)
152 R_norm = std::max<double>(R_norm, std::abs(d(iq - 1)));
156 inline void deleteConstraint(
158 typename RtVector<nIneqCon+nEqCon>::i & A,
typename RtVector<nIneqCon+nEqCon>::d & u,
int p,
int& iq,
int l)
164 double cc, ss, h, xny, t1, t2;
167 for (i = p; i < iq; i++)
168 if (A(i) == l) { qq = i;
break; }
171 for (i = qq; i < iq - 1; i++) {
174 R.col(i) = R.col(i+1);
187 if (iq == 0) {
return; }
189 for (j = qq; j < iq; j++) {
192 h = distance(cc, ss);
193 if (h == 0.0) {
continue; }
201 }
else { R(j,j) = h; }
203 xny = ss / (1.0 + cc);
204 for (k = j + 1; k < iq; k++) {
207 R(j,k) = t1 * cc + t2 * ss;
208 R(j + 1,k) = xny * (t1 + R(j,k)) - t2;
210 for (k = 0; k < n; k++) {
213 J(k,j) = t1 * cc + t2 * ss;
214 J(k,j + 1) = xny * (J(k,j) + t1) - t2;
227 const typename RtMatrix<nEqCon, nVars>::d & CE,
const typename RtVector<nEqCon>::d & ce0,
228 const typename RtMatrix<nIneqCon, nVars>::d & CI,
const typename RtVector<nIneqCon>::d & ci0,
229 typename RtVector<nVars>::d & x)
238 typename RtVector<nIneqCon+nEqCon>::d s, r, u;
239 RtVectorUtils::resize(s, p+m);
240 RtVectorUtils::resize(r, p+m);
241 RtVectorUtils::resize(u, p+m);
242 typename RtVector<nVars+nEqCon>::d u_old;
243 RtVectorUtils::resize(u_old, p+n);
244 typename RtVector<nVars>::d z, d, np, x_old;
245 RtVectorUtils::resize(z, n);
246 RtVectorUtils::resize(d, n);
247 RtVectorUtils::resize(np, n);
248 RtVectorUtils::resize(x_old, n);
249 double f_value, psi, c1, c2, sum, ss, R_norm;
250 const double inf = std::numeric_limits<double>::infinity();
253 typename RtVector<nIneqCon+nEqCon>::i A, A_old, iai, iaexcl;
254 RtVectorUtils::resize(A, p+m);
255 RtVectorUtils::resize(A_old, p+m);
256 RtVectorUtils::resize(iai, p+m);
257 RtVectorUtils::resize(iaexcl, p+m);
272 if(!is_inverse_provided_) { chol_.compute(Hess); }
275 RtVectorUtils::setZero(d, n);
276 RtMatrixUtils::setZero(R, n, n);
281 if(!is_inverse_provided_) {
282 RtMatrixUtils::setIdentity(Hessian_factor_inv_, n);
283 Hessian_factor_inv_ = chol_.matrixU().solve(Hessian_factor_inv_);
285 #ifndef RTEIG_NO_ASSERTS 286 assert(Hessian_factor_inv_.rows() == n && Hessian_factor_inv_.cols() == n);
289 #ifndef RTEIG_NO_ASSERTS 291 assert((Hess*Hessian_factor_inv_*Hessian_factor_inv_.transpose() - Eigen::MatrixXd::Identity(Hess.rows(), Hess.cols())).norm() < 0.0001 &&
"inverse is weird");
294 c2 = Hessian_factor_inv_.trace();
303 if(is_inverse_provided_) { x = Hessian_factor_inv_*Hessian_factor_inv_.transpose()*g0; }
304 else { x = chol_.solve(g0); }
308 f_value = 0.5 * g0.dot(x);
312 for (i = 0; i < me; i++)
315 computeD(d, Hessian_factor_inv_, np);
316 updateZ(z, Hessian_factor_inv_, d, iq);
317 updateR(R, r, d, iq);
322 if (std::abs(z.dot(z)) > std::numeric_limits<double>::epsilon())
323 t2 = (-np.dot(x) - ce0(i)) / z.dot(np);
329 u.head(iq) -= t2 * r.head(iq);
332 f_value += 0.5 * (t2 * t2) * z.dot(np);
335 if (!addConstraint(R, Hessian_factor_inv_, d, iq, R_norm))
339 #ifndef RTEIG_NO_ASSERTS 340 assert(
false &&
"equality constraints are linearly dependent");
347 for (i = 0; i < mi; i++)
353 for (i = me; i < iq; i++)
363 for (i = 0; i < mi; i++)
366 sum = -(CI.row(i).dot(x) + ci0(i));
368 psi += std::min(0.0, sum);
371 if (std::abs(psi) <= mi * std::numeric_limits<double>::epsilon() * c1 * c2* 100.0)
379 u_old.head(iq) = u.head(iq);
380 A_old.head(iq) = A.head(iq);
384 for (i = 0; i < mi; i++)
386 if (s(i) < ss && iai(i) != -1 && iaexcl(i))
409 computeD(d, Hessian_factor_inv_, np);
411 if(iq >= Hessian_factor_inv_.cols())
416 updateZ(z, Hessian_factor_inv_, d, iq);
419 updateR(R, r, d, iq);
426 for (k = me; k < iq; k++)
429 if (r(k) > 0.0 && ((tmp = u(k) / r(k)) < t1) )
436 if (std::abs(z.dot(z)) > std::numeric_limits<double>::epsilon())
437 t2 = -s(ip) / z.dot(np);
442 t = std::min(t1, t2);
458 u.head(iq) -= t * r.head(iq);
461 deleteConstraint(R, Hessian_factor_inv_, A, u, p, iq, l);
470 f_value += t * z.dot(np) * (0.5 * t + u(iq));
472 u.head(iq) -= t * r.head(iq);
479 if (!addConstraint(R, Hessian_factor_inv_, d, iq, R_norm))
482 deleteConstraint(R, Hessian_factor_inv_, A, u, p, iq, ip);
484 for (i = 0; i < m; i++)
486 for (i = 0; i < iq; i++)
503 deleteConstraint(R, Hessian_factor_inv_, A, u, p, iq, l);
505 s(ip) = -(CI.row(ip).dot(x) + ci0(ip));
Definition: RtQPSolverInterface.hpp:19
Definition: RtMatrix.hpp:18
Definition: RtQPSolver.hpp:17
double solveQP(const typename RtMatrix< nVars, nVars >::d &Hess, const typename RtVector< nVars >::d &g0, const typename RtMatrix< nEqCon, nVars >::d &CE, const typename RtVector< nEqCon >::d &ce0, const typename RtMatrix< nIneqCon, nVars >::d &CI, const typename RtVector< nIneqCon >::d &ci0, typename RtVector< nVars >::d &x)
Main function to solve QP using EigQuadProg min.
Definition: RtQPSolver.hpp:225