solver
RtQPSolver.hpp
Go to the documentation of this file.
1 
10 #pragma once
11 
13 
14 namespace rt_solver {
15 
16  template<int nVars, int nEqCon, int nIneqCon>
17  class RtQPSolver : public RtQPSolverInterface<nVars, nEqCon, nIneqCon>
18  {
19  public:
20  // default constructor and destructor methods
21  RtQPSolver(): solver_return_(std::numeric_limits<double>::infinity())
22  {
23  cleanup_ineqs_ = false;
24  is_inverse_provided_ = false;
25  }
26  virtual ~RtQPSolver(){}
27 
28  // function to optimize problem and return a flag about the exit code
29  bool optimize()
30  {
31  if (BaseClass::objectiveQuadPart().rows() == 0) { return true; }
32  solver_return_ = solveQP(BaseClass::objectiveQuadPart(),
33  BaseClass::objectiveLinPart(), BaseClass::eqConstraintsMat(),
34  BaseClass::eqConstraintsVec(), BaseClass::ineqConstraintsMat(),
35  BaseClass::ineqConstraintsVec(), BaseClass::solution());
36 
37  return isOptimized();
38  }
39  bool isOptimized() const { return solver_return_ != std::numeric_limits<double>::infinity(); }
40 
41  private:
42  // definition of base class
44 
45  // internal helper reset functions
46  inline void reset()
47  {
48  BaseClass::reset();
49  RtMatrixUtils::setZero(Hessian_factor_inv_, nVars, nVars);
50  solver_return_ = std::numeric_limits<double>::infinity();
51  }
52  inline void reset(int dim_qp, int num_eq, int num_ineq)
53  {
54  BaseClass::reset(dim_qp, num_eq, num_ineq);
55  RtMatrixUtils::setZero(Hessian_factor_inv_, dim_qp, dim_qp);
56  solver_return_ = std::numeric_limits<double>::infinity();
57  }
58 
59  // helper optimization variables
60  bool cleanup_ineqs_;
61  double solver_return_;
62  bool is_inverse_provided_;
63  typename RtMatrix<nVars,nVars>::d Hessian_factor_inv_;
64  Eigen::LLT<typename RtMatrix<nVars,nVars>::d,Eigen::Lower> chol_;
65 
66  // helper function to measure a distance
67  template<typename Scalar>
68  inline Scalar distance(Scalar a, Scalar b)
69  {
70  Scalar a1, b1, t;
71  a1 = std::abs(a);
72  b1 = std::abs(b);
73  if (a1 > b1) {
74  t = (b1 / a1);
75  return a1 * std::sqrt(1.0 + t * t);
76  } else if (b1 > a1) {
77  t = (a1 / b1);
78  return b1 * std::sqrt(1.0 + t * t);
79  }
80  return a1 * std::sqrt(2.0);
81  }
82 
83  // helper functions to update terms
84  inline void computeD(typename RtVector<nVars>::d & d,
85  const typename RtMatrix<nVars,nVars>::d & J, const typename RtVector<nVars>::d & np)
86  { d = J.adjoint() * np; }
87 
88  inline void updateZ(typename RtVector<nVars>::d & z,
89  const typename RtMatrix<nVars,nVars>::d & J,
90  const typename RtVector<nVars>::d & d, int iq)
91  { z = J.rightCols(J.cols()-iq) * d.tail(J.cols()-iq); }
92 
93  inline void updateR(const typename RtMatrix<nVars,nVars>::d & R,
94  typename RtVector<nIneqCon+nEqCon>::d& r, const typename RtVector<nVars>::d& d, int iq)
95  { r.head(iq)= R.topLeftCorner(iq,iq).template triangularView<Eigen::Upper>().solve(d.head(iq)); }
96 
97  // helper functions to add and delete constraints
98  inline bool addConstraint(
99  typename RtMatrix<nVars,nVars>::d & R, typename RtMatrix<nVars,nVars>::d & J,
100  typename RtVector<nVars>::d & d, int& iq, double& R_norm)
101  {
102  int n=J.rows();
103 
104  int j, k;
105  double cc, ss, h, t1, t2, xny;
106 
107  // we have to find the Givens rotation which will reduce the element d(j) to zero.
108  // if it is already zero we don't have to do anything, except of decreasing j */
109  for (j=n-1; j>=iq+1; j--)
110  {
111  // The Givens rotation is done with the matrix (cc cs, cs -cc). If cc is one, then
112  // element (j) of d is zero compared with element (j-1). Hence we don't have to do
113  // anything. If cc is zero, then we just have to switch column (j) and column (j-1)
114  // of J. Since we only switch columns in J, we have to be careful how we update d
115  // depending on the sign of gs. Otherwise we have to apply the Givens rotation to
116  // these columns. The i-1 element of d has to be updated to h.
117 
118  cc = d(j - 1);
119  ss = d(j);
120  h = distance(cc, ss);
121  if (h == 0.0)
122  continue;
123 
124  d(j) = 0.0;
125  ss = ss / h;
126  cc = cc / h;
127  if (cc < 0.0) {
128  cc = -cc;
129  ss = -ss;
130  d(j - 1) = -h;
131  } else {
132  d(j - 1) = h;
133  }
134  xny = ss / (1.0 + cc);
135  for (k = 0; k < n; k++)
136  {
137  t1 = J(k,j - 1);
138  t2 = J(k,j);
139  J(k,j - 1) = t1 * cc + t2 * ss;
140  J(k,j) = xny * (t1 + J(k,j - 1)) - t2;
141  }
142  }
143 
144  // update the number of constraints added
145  iq++;
146 
147  // To update R we have to put the iq components of the d vector into column iq - 1 of R
148  R.col(iq-1).head(iq) = d.head(iq);
149  if (std::abs(d(iq - 1)) <= std::numeric_limits<double>::epsilon() * R_norm)
150  return false; // problem degenerate
151 
152  R_norm = std::max<double>(R_norm, std::abs(d(iq - 1)));
153  return true;
154  }
155 
156  inline void deleteConstraint(
157  typename RtMatrix<nVars,nVars>::d& R, typename RtMatrix<nVars,nVars>::d& J,
158  typename RtVector<nIneqCon+nEqCon>::i & A, typename RtVector<nIneqCon+nEqCon>::d & u, int p, int& iq, int l)
159  {
160  int n = J.rows();
161 
162  int i, j, k;
163  int qq =0;
164  double cc, ss, h, xny, t1, t2;
165 
166  // Find the index qq for active constraint l to be removed
167  for (i = p; i < iq; i++)
168  if (A(i) == l) { qq = i; break; }
169 
170  // remove the constraint from the active set and the duals
171  for (i = qq; i < iq - 1; i++) {
172  A(i) = A(i + 1);
173  u(i) = u(i + 1);
174  R.col(i) = R.col(i+1);
175  }
176 
177  A(iq - 1) = A(iq);
178  u(iq - 1) = u(iq);
179  A(iq) = 0;
180  u(iq) = 0.0;
181  for (j=0; j<iq; j++)
182  R(j,iq - 1) = 0.0;
183 
184  // constraint has been fully removed
185  iq--;
186 
187  if (iq == 0) { return; }
188 
189  for (j = qq; j < iq; j++) {
190  cc = R(j,j);
191  ss = R(j + 1,j);
192  h = distance(cc, ss);
193  if (h == 0.0) { continue; }
194  cc = cc / h;
195  ss = ss / h;
196  R(j + 1,j) = 0.0;
197  if (cc < 0.0) {
198  R(j,j) = -h;
199  cc = -cc;
200  ss = -ss;
201  } else { R(j,j) = h; }
202 
203  xny = ss / (1.0 + cc);
204  for (k = j + 1; k < iq; k++) {
205  t1 = R(j,k);
206  t2 = R(j + 1,k);
207  R(j,k) = t1 * cc + t2 * ss;
208  R(j + 1,k) = xny * (t1 + R(j,k)) - t2;
209  }
210  for (k = 0; k < n; k++) {
211  t1 = J(k,j);
212  t2 = J(k,j + 1);
213  J(k,j) = t1 * cc + t2 * ss;
214  J(k,j + 1) = xny * (J(k,j) + t1) - t2;
215  }
216  }
217  }
218 
225  inline double solveQP(
226  const typename RtMatrix<nVars,nVars>::d & Hess, const typename RtVector<nVars>::d & g0,
227  const typename RtMatrix<nEqCon, nVars>::d & CE, const typename RtVector<nEqCon>::d & ce0,
228  const typename RtMatrix<nIneqCon, nVars>::d & CI, const typename RtVector<nIneqCon>::d & ci0,
229  typename RtVector<nVars>::d & x)
230  {
231  int i, k, l;
232  int ip, me, mi;
233  int n=Hess.rows();
234  int p=ce0.size();
235  int m=ci0.size();
236  typename RtMatrix<nVars,nVars>::d R;
237 
238  typename RtVector<nIneqCon+nEqCon>::d s, r, u;
239  RtVectorUtils::resize(s, p+m);
240  RtVectorUtils::resize(r, p+m);
241  RtVectorUtils::resize(u, p+m);
242  typename RtVector<nVars+nEqCon>::d u_old;
243  RtVectorUtils::resize(u_old, p+n);
244  typename RtVector<nVars>::d z, d, np, x_old;
245  RtVectorUtils::resize(z, n);
246  RtVectorUtils::resize(d, n);
247  RtVectorUtils::resize(np, n);
248  RtVectorUtils::resize(x_old, n);
249  double f_value, psi, c1, c2, sum, ss, R_norm;
250  const double inf = std::numeric_limits<double>::infinity();
251  double t, t1, t2; /* t is the step length, which is the minimum of the partial step length t1
252  * and the full step length t2 */
253  typename RtVector<nIneqCon+nEqCon>::i A, A_old, iai, iaexcl;
254  RtVectorUtils::resize(A, p+m);
255  RtVectorUtils::resize(A_old, p+m);
256  RtVectorUtils::resize(iai, p+m);
257  RtVectorUtils::resize(iaexcl, p+m);
258  // int q; // warning unusued
259  int iq, iter = 0;
260 
261  me = p; /* number of equality constraints */
262  mi = m; /* number of inequality constraints */
263  // q = 0; /* size of the active set A (containing the indices of the active constraints) */
264 
265  /*
266  * Preprocessing phase
267  */
268  /* compute the trace of the original matrix Hess */
269  c1 = Hess.trace();
270 
271  /* decompose the matrix Hess in the form LL^T */
272  if(!is_inverse_provided_) { chol_.compute(Hess); }
273 
274  /* initialize the matrix R */
275  RtVectorUtils::setZero(d, n);
276  RtMatrixUtils::setZero(R, n, n);
277  R_norm = 1.0; /* this variable will hold the norm of the matrix R */
278 
279  /* compute the inverse of the factorized matrix Hess^-1, this is the initial value for H */
280  // Hessian_factor_inv_ = L^-T
281  if(!is_inverse_provided_) {
282  RtMatrixUtils::setIdentity(Hessian_factor_inv_, n);
283  Hessian_factor_inv_ = chol_.matrixU().solve(Hessian_factor_inv_);
284 
285  #ifndef RTEIG_NO_ASSERTS
286  assert(Hessian_factor_inv_.rows() == n && Hessian_factor_inv_.cols() == n);
287  #endif
288  } else {
289  #ifndef RTEIG_NO_ASSERTS
290  //std::cout << "hess*inv norm: " << (Hess*Hessian_factor_inv_*Hessian_factor_inv_.transpose() - Eigen::MatrixXd::Identity(Hess.rows(), Hess.cols())) << std::endl;
291  assert((Hess*Hessian_factor_inv_*Hessian_factor_inv_.transpose() - Eigen::MatrixXd::Identity(Hess.rows(), Hess.cols())).norm() < 0.0001 && "inverse is weird");
292  #endif
293  }
294  c2 = Hessian_factor_inv_.trace();
295 
296  /* c1 * c2 is an estimate for cond(Hess) */
297 
298  /*
299  * Find the unconstrained minimizer of the quadratic form 0.5 * x Hess x + g0 x
300  * this is a feasible point in the dual space
301  * x = Hess^-1 * g0
302  */
303  if(is_inverse_provided_) { x = Hessian_factor_inv_*Hessian_factor_inv_.transpose()*g0; }
304  else { x = chol_.solve(g0); }
305  x = -x;
306 
307  /* and compute the current solution value */
308  f_value = 0.5 * g0.dot(x);
309 
310  /* Add equality constraints to the working set A */
311  iq = 0;
312  for (i = 0; i < me; i++)
313  {
314  np = CE.row(i);
315  computeD(d, Hessian_factor_inv_, np);
316  updateZ(z, Hessian_factor_inv_, d, iq);
317  updateR(R, r, d, iq);
318 
319  /* compute full step length t2: i.e., the minimum step in primal space s.t. the contraint
320  becomes feasible */
321  t2 = 0.0;
322  if (std::abs(z.dot(z)) > std::numeric_limits<double>::epsilon()) // i.e. z != 0
323  t2 = (-np.dot(x) - ce0(i)) / z.dot(np);
324 
325  x += t2 * z;
326 
327  /* set u = u+ */
328  u(iq) = t2;
329  u.head(iq) -= t2 * r.head(iq);
330 
331  /* compute the new solution value */
332  f_value += 0.5 * (t2 * t2) * z.dot(np);
333  A(i) = -i - 1;
334 
335  if (!addConstraint(R, Hessian_factor_inv_, d, iq, R_norm))
336  {
337  // FIXME: it should raise an error
338  // Equality constraints are linearly dependent
339  #ifndef RTEIG_NO_ASSERTS
340  assert(false && "equality constraints are linearly dependent");
341  #endif
342  return f_value;
343  }
344  }
345 
346  /* set iai = K \ A */
347  for (i = 0; i < mi; i++)
348  iai(i) = i;
349 
350  l1: iter++;
351 
352  /* step 1: choose a violated constraint */
353  for (i = me; i < iq; i++)
354  {
355  ip = A(i);
356  iai(ip) = -1;
357  }
358 
359  /* compute s(x) = ci^T * x + ci0 for all elements of K \ A */
360  ss = 0.0;
361  psi = 0.0; /* this value will contain the sum of all infeasibilities */
362  ip = 0; /* ip will be the index of the chosen violated constraint */
363  for (i = 0; i < mi; i++)
364  {
365  iaexcl(i) = 1;
366  sum = -(CI.row(i).dot(x) + ci0(i));
367  s(i) = sum;
368  psi += std::min(0.0, sum);
369  }
370 
371  if (std::abs(psi) <= mi * std::numeric_limits<double>::epsilon() * c1 * c2* 100.0)
372  {
373  /* numerically there are not infeasibilities anymore */
374  // q = iq;
375  return f_value;
376  }
377 
378  /* save old values for u, x and A */
379  u_old.head(iq) = u.head(iq);
380  A_old.head(iq) = A.head(iq);
381  x_old = x;
382 
383  l2: /* Step 2: check for feasibility and determine a new S-pair */
384  for (i = 0; i < mi; i++)
385  {
386  if (s(i) < ss && iai(i) != -1 && iaexcl(i))
387  {
388  ss = s(i);
389  ip = i;
390  }
391  }
392  if (ss >= 0.0)
393  {
394  // q = iq;
395  return f_value;
396  }
397 
398  /* set np = n(ip) */
399  np = -CI.row(ip);
400 
401  /* set u = (u 0)^T */
402  u(iq) = 0.0;
403 
404  /* add ip to the active set A */
405  A(iq) = ip;
406 
407  l2a: /* Step 2a: determine step direction */
408  /* compute z = H np: the step direction in the primal space (through Hessian_factor_inv_, see the paper) */
409  computeD(d, Hessian_factor_inv_, np);
410  //updateZ(z, Hessian_factor_inv_, d, iq);
411  if(iq >= Hessian_factor_inv_.cols())
412  {
413  //throw std::runtime_error("iq >= Hessian_factor_inv_.cols()");
414  z.setZero();
415  } else {
416  updateZ(z, Hessian_factor_inv_, d, iq);
417  }
418  /* compute N* np (if q > 0): the negative of the step direction in the dual space */
419  updateR(R, r, d, iq);
420 
421  /* Step 2b: compute step length */
422  l = 0;
423  /* Compute t1: partial step length (maximum step in dual space without violating dual feasibility */
424  t1 = inf; /* +inf */
425  /* find the index l s.t. it reaches the minimum of u+(x) / r */
426  for (k = me; k < iq; k++)
427  {
428  double tmp;
429  if (r(k) > 0.0 && ((tmp = u(k) / r(k)) < t1) )
430  {
431  t1 = tmp;
432  l = A(k);
433  }
434  }
435  /* Compute t2: full step length (minimum step in primal space such that the constraint ip becomes feasible */
436  if (std::abs(z.dot(z)) > std::numeric_limits<double>::epsilon()) // i.e. z != 0
437  t2 = -s(ip) / z.dot(np);
438  else
439  t2 = inf; /* +inf */
440 
441  /* the step is chosen as the minimum of t1 and t2 */
442  t = std::min(t1, t2);
443 
444  /* Step 2c: determine new S-pair and take step: */
445 
446  /* case (i): no step in primal or dual space */
447  if (t >= inf)
448  {
449  /* QPP is infeasible */
450  // FIXME: unbounded to raise
451  // q = iq;
452  return inf;
453  }
454  /* case (ii): step in dual space */
455  if (t2 >= inf)
456  {
457  /* set u = u + t * [-r 1) and drop constraint l from the active set A */
458  u.head(iq) -= t * r.head(iq);
459  u(iq) += t;
460  iai(l) = l;
461  deleteConstraint(R, Hessian_factor_inv_, A, u, p, iq, l);
462 
463  goto l2a;
464  }
465 
466  /* case (iii): step in primal and dual space */
467 
468  x += t * z;
469  /* update the solution value */
470  f_value += t * z.dot(np) * (0.5 * t + u(iq));
471 
472  u.head(iq) -= t * r.head(iq);
473  u(iq) += t;
474 
475  if (t == t2)
476  {
477  /* full step has taken */
478  /* add constraint ip to the active set*/
479  if (!addConstraint(R, Hessian_factor_inv_, d, iq, R_norm))
480  {
481  iaexcl(ip) = 0;
482  deleteConstraint(R, Hessian_factor_inv_, A, u, p, iq, ip);
483 
484  for (i = 0; i < m; i++)
485  iai(i) = i;
486  for (i = 0; i < iq; i++)
487  {
488  A(i) = A_old(i);
489  iai(A(i)) = -1;
490  u(i) = u_old(i);
491  }
492  x = x_old;
493  goto l2; /* go to step 2 */
494  }
495  else
496  iai(ip) = -1;
497  goto l1;
498  }
499 
500  /* a patial step has taken */
501  /* drop constraint l */
502  iai(l) = l;
503  deleteConstraint(R, Hessian_factor_inv_, A, u, p, iq, l);
504 
505  s(ip) = -(CI.row(ip).dot(x) + ci0(ip));
506 
507  goto l2a;
508  }
509  };
510 
511 }
Definition: RtQPSolverInterface.hpp:19
Definition: RtMatrix.hpp:18
Definition: Var.hpp:14
Definition: RtQPSolver.hpp:17
double solveQP(const typename RtMatrix< nVars, nVars >::d &Hess, const typename RtVector< nVars >::d &g0, const typename RtMatrix< nEqCon, nVars >::d &CE, const typename RtVector< nEqCon >::d &ce0, const typename RtMatrix< nIneqCon, nVars >::d &CI, const typename RtVector< nIneqCon >::d &ci0, typename RtVector< nVars >::d &x)
Main function to solve QP using EigQuadProg min.
Definition: RtQPSolver.hpp:225