solver
solver::lbfgs_parameter_t Struct Reference

L-BFGS optimization parameters. More...

#include <LbfgsSolver.hpp>

Public Attributes

int m
 The number of corrections to approximate the inverse hessian matrix. More...
 
double epsilon
 Epsilon for convergence test. More...
 
int past
 Distance for delta-based convergence test. More...
 
double delta
 Delta for convergence test. More...
 
int max_iterations
 The maximum number of iterations. More...
 
int linesearch
 The line search algorithm. More...
 
int max_linesearch
 The maximum number of trials for the line search. More...
 
double min_step
 The minimum step of the line search routine. More...
 
double max_step
 The maximum step of the line search. More...
 
double ftol
 A parameter to control the accuracy of the line search routine. More...
 
double wolfe
 A coefficient for the Wolfe condition. More...
 
double gtol
 A parameter to control the accuracy of the line search routine. More...
 
double xtol
 The machine precision for floating-point values. More...
 

Detailed Description

L-BFGS optimization parameters.

Call lbfgs_parameter_init() function to initialize parameters to the default values.

Member Data Documentation

double solver::lbfgs_parameter_t::delta

Delta for convergence test.

This parameter determines the minimum rate of decrease of the objective function. The library stops iterations when the following condition is met: (f' - f) / f < delta, where f' is the objective value of past iterations ago, and f is the objective value of the current iteration. The default value is 0.

double solver::lbfgs_parameter_t::epsilon

Epsilon for convergence test.

This parameter determines the accuracy with which the solution is to be found. A minimization terminates when ||g|| < epsilon * max(1, ||x||), where ||.|| denotes the Euclidean (L2) norm. The default value is 1e-5.

double solver::lbfgs_parameter_t::ftol

A parameter to control the accuracy of the line search routine.

The default value is 1e-4. This parameter should be greater than zero and smaller than 0.5.

double solver::lbfgs_parameter_t::gtol

A parameter to control the accuracy of the line search routine.

The default value is 0.9. If the function and gradient evaluations are inexpensive with respect to the cost of the iteration (which is sometimes the case when solving very large problems) it may be advantageous to set this parameter to a small value. A typical small value is 0.1. This parameter shuold be greater than the ftol parameter (1e-4) and smaller than 1.0.

int solver::lbfgs_parameter_t::linesearch

The line search algorithm.

This parameter specifies a line search algorithm to be used by the L-BFGS routine.

int solver::lbfgs_parameter_t::m

The number of corrections to approximate the inverse hessian matrix.

The L-BFGS routine stores the computation results of previous m iterations to approximate the inverse hessian matrix of the current iteration. This parameter controls the size of the limited memories (corrections). The default value is 6. Values less than 3 are not recommended. Large values will result in excessive computing time.

int solver::lbfgs_parameter_t::max_iterations

The maximum number of iterations.

The lbfgs() function terminates an optimization process with ::LBFGSERR_MAXIMUMITERATION status code when the iteration count exceedes this parameter. Setting this parameter to zero continues an optimization process until a convergence or error. The default value is 0.

int solver::lbfgs_parameter_t::max_linesearch

The maximum number of trials for the line search.

This parameter controls the number of function and gradients evaluations per iteration for the line search routine. The default value is 20.

double solver::lbfgs_parameter_t::max_step

The maximum step of the line search.

The default value is 1e+20. This value need not be modified unless the exponents are too large for the machine being used, or unless the problem is extremely badly scaled (in which case the exponents should be increased).

double solver::lbfgs_parameter_t::min_step

The minimum step of the line search routine.

The default value is 1e-20. This value need not be modified unless the exponents are too large for the machine being used, or unless the problem is extremely badly scaled (in which case the exponents should be increased).

int solver::lbfgs_parameter_t::past

Distance for delta-based convergence test.

This parameter determines the distance, in iterations, to compute the rate of decrease of the objective function. If the value of this parameter is zero, the library does not perform the delta-based convergence test. The default value is 0.

double solver::lbfgs_parameter_t::wolfe

A coefficient for the Wolfe condition.

This parameter is valid only when the backtracking line-search algorithm is used with the Wolfe condition, ::LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE or ::LBFGS_LINESEARCH_BACKTRACKING_WOLFE . The default value is 0.9. This parameter should be greater the ftol parameter and smaller than 1.0.

double solver::lbfgs_parameter_t::xtol

The machine precision for floating-point values.

This parameter must be a positive value set by a client program to estimate the machine precision. The line search routine will terminate with the status code (::LBFGSERR_ROUNDING_ERROR) if the relative width of the interval of uncertainty is less than this parameter.


The documentation for this struct was generated from the following file: