C++ API and example¶
1. Introduction¶
This page exist in order to extract the examples from the Doxygen documentation, Please have look at the end of this page there are all the examples.
2. C++ API and example¶
-
class BaseEkfWithImuKin
- #include <base_ekf_with_imu_kin.hpp>
Extended Kalman Filter implementation for base state estimation using the imu and the kinematics information.
Details:
- Todo:
explain here the math around the EKF
Public Functions
-
BaseEkfWithImuKin()
Construct a new Base Ekf With Imu and Kinematics object.
-
~BaseEkfWithImuKin()
Destroy the Base Ekf With Imu Kin object.
-
void initialize(const BaseEkfWithImuKinSettings &settings)
Get the EKF settings and initialize the filter from them.
- Parameters:
settings –
-
void set_initial_state(Eigen::Ref<const Eigen::Vector3d> base_position, const Eigen::Quaterniond &base_attitude, Eigen::Ref<const Eigen::Vector3d> base_linear_velocity, Eigen::Ref<const Eigen::Vector3d> base_angular_velocity)
Set initial state.
- Parameters:
base_position – Base position with respect to the world frame.
base_attitude – Base orientation with respect to the world frame.
base_linear_velocity – Base linear velocity with respect to the base frame.
base_angular_velocity – Base angular velocity with respect to the base frame.
-
void set_initial_state(Eigen::Ref<const Eigen::Matrix<double, 7, 1>> base_se3_position, Eigen::Ref<const Eigen::Matrix<double, 6, 1>> base_se3_velocity)
Set initial state.
- Parameters:
base_se3_position – [XYZ Quaternion] SE3 representation of the base position with respect to the world frame.
base_se3_velocity – [Linear Angular] base velocity in the base frame.
-
void update_filter(const std::vector<bool> &contact_schedule, Eigen::Ref<const Eigen::Vector3d> imu_accelerometer, Eigen::Ref<const Eigen::Vector3d> imu_gyroscope, Eigen::Ref<const Eigen::VectorXd> joint_position, Eigen::Ref<const Eigen::VectorXd> joint_velocity)
Feed in the sensor raw data from the robot and update the filter output.
- Parameters:
contact_schedule – vector of boolean, if one boolean is true it means that the corresponding end-effector is in contact.
imu_accelerometer – imu raw accelerometer data.
imu_gyroscope – imu raw gyroscope data.
joint_position – joint position data (in pinocchio ordering).
joint_velocity – joint velocity data (in pinocchio ordering).
-
void get_filter_output(Eigen::Ref<Eigen::VectorXd> robot_configuration, Eigen::Ref<Eigen::VectorXd> robot_velocity)
Get the filter output which is the robot state.
- Parameters:
robot_configuration –
robot_velocity –
-
const std::vector<Eigen::Vector3d, Eigen::aligned_allocator<Eigen::Vector3d>> &get_measurement()
Get measurement.
- Parameters:
root_velocities –
Private Functions
-
void compute_end_effectors_forward_kinematics(Eigen::Ref<const Eigen::VectorXd> joint_position, Eigen::Ref<const Eigen::VectorXd> joint_velocity)
Compute the base/imu velocities.
-
void integrate_process_model(Eigen::Ref<const Eigen::Vector3d> imu_accelerometer, Eigen::Ref<const Eigen::Vector3d> imu_gyroscope)
Integrate the process model using the imu data.
compute mu_pre.
-
void compute_discrete_prediction_jacobian()
Fill in the process jacobians (cont_proc_jac_, disc_proc_jac_).
-
void compute_noise_jacobian()
Fill in the noise jacobian.
-
void construct_continuous_noise_covariance()
Use and additive white noise as continuous noise.
-
void construct_discrete_noise_covariance()
Discretise the noise covariance using zero-order hold and truncating higher-order terms.
-
void construct_discrete_measurement_noise_covariance()
Discretise the measurement noise covariance.
-
void prediction_step()
Propagate the state covariance (predicted_state_.covariance).
-
void measurement_model(const std::vector<bool> &contact_schedule, Eigen::Ref<const Eigen::VectorXd> joint_position, Eigen::Ref<const Eigen::VectorXd> joint_velocity)
Use the kinematics to measure the linear velocity of the base.
- Parameters:
contact_schedule – This indicates which end-effector is currently in contact.
joint_position – joint positions.
joint_velocity – joint velocities.
-
void update_step(const std::vector<bool> &contact_schedule, Eigen::Ref<const Eigen::VectorXd> joint_position, Eigen::Ref<const Eigen::VectorXd> joint_velocity)
Update the current state posterior_state_ in function of the measurements.
- Parameters:
contact_schedule – This indicates which end-effector is currently in contact.
joint_position – joint positions.
joint_velocity – joint velocities.
Private Members
-
BaseEkfWithImuKinSettings settings_
-
Eigen::VectorXd joint_position_
Joint positions reading.
-
Eigen::VectorXd joint_velocity_
Joint velocities reading.
-
Eigen::Vector3d imu_accelerometer_
Accelerometer reading.
-
Eigen::Vector3d imu_gyroscope_
Joint velocities.
-
SystemState predicted_state_
Predicted system state (next state).
-
SystemState posterior_state_
Posterior system state (current state).
-
pinocchio::Data pinocchio_data_
Rigid body dynamics data storage class.
-
std::vector<Eigen::Vector3d, Eigen::aligned_allocator<Eigen::Vector3d>> kin_ee_position_
Measured end-effectors positions expressed in the imu/base frame.
-
std::vector<Eigen::Vector3d, Eigen::aligned_allocator<Eigen::Vector3d>> kin_ee_velocity_
Measured end-effectors velocities expressed in the imu/base frame.
-
std::vector<pinocchio::FrameIndex> kin_ee_fid_
Pinocchio frame id corresponding to the end-effector potentially in contact.
-
Eigen::VectorXd q_kin_
Robot configuration with base at the center of the world.
-
Eigen::VectorXd dq_kin_
Robot velocity with static base frame.
-
Eigen::Matrix3d attitude_post_
Rotation matrix from the posterior state.
-
Eigen::Vector3d root_angular_velocity_
Imu/Base angular velocity.
-
Eigen::Vector3d root_angular_velocity_prev_
Imu/Base angular velocity previous value.
-
Eigen::Vector3d root_angular_acceleration_
Imu/Base angular acceleration.
-
Eigen::Vector3d root_linear_acceleration_
Imu/Base angular velocity.
-
Eigen::Vector3d gravity_
Gravity vector (default is negative along the z-axis).
-
Eigen::MatrixXd cont_proc_jac_
Continuous process jacobian.
-
Eigen::MatrixXd disc_proc_jac_
Discrete process jacobian.
-
Eigen::MatrixXd proc_noise_jac_
Process noise jacobian.
-
Eigen::MatrixXd cont_proc_noise_cov_
Continuous process noise covariance.
-
Eigen::MatrixXd disc_proc_noise_cov_
Discrete process noise covariance.
-
Eigen::MatrixXd disc_meas_noise_cov_
Discrete measurement noise covariance.
-
std::vector<Eigen::Vector3d, Eigen::aligned_allocator<Eigen::Vector3d>> kin_meas_root_velocity_
Linear velocity of the root (base/imu) measured from the kinematics.
-
Eigen::MatrixXd meas_jac_
Measurement jacobian.
-
Eigen::VectorXd meas_error_
Predicted base velocity, this is the predicted measurement.
-
Eigen::MatrixXd meas_covariance_
Measurement covariance.
-
Eigen::MatrixXd kalman_gain_
Kalman Gain computed during the update_step.
-
Eigen::LDLT<Eigen::MatrixXd> ldlt
LDLT decomposition to invert some matrix.
-
Eigen::VectorXd delta_state_
Update vector which is a delta state.
-
struct BaseEkfWithImuKinSettings
- #include <base_ekf_with_imu_kin.hpp>
Subclassed by mim_estimation::RobotStateEstimatorSettings
Public Functions
-
inline virtual std::string to_string()
Public Members
-
bool is_imu_frame = true
Is the EKF estimating the imu or the base frame.
-
std::vector<std::string> end_effector_frame_names
Potential contact end effector frame names.
-
pinocchio::Model pinocchio_model
Rigid body dynamic model.
-
pinocchio::SE3 imu_in_base = pinocchio::SE3::Identity()
Imu position and orientation in the base frame.
-
double dt = 0.001
discretization time.
-
Eigen::Vector3d noise_accelerometer = 0.0001962 * 0.0001962 * (Eigen::Vector3d() << dt, dt, dt).finished()
Accelerometer noise covariance.
-
Eigen::Vector3d noise_gyroscope = 0.0000873 * 0.0000873 * (Eigen::Vector3d() << dt, dt, dt).finished()
Gyroscope noise covariance.
-
Eigen::Vector3d noise_bias_accelerometer = 0.0001 * 0.0001 * (Eigen::Vector3d() << 1.0, 1.0, 1.0).finished()
Accelerometer bias noise covariance.
-
Eigen::Vector3d noise_bias_gyroscope = 0.000309 * 0.000309 * (Eigen::Vector3d() << 1.0, 1.0, 1.0).finished()
Gyroscope bias noise covariance.
-
Eigen::Vector3d meas_noise_cov = (Eigen::Vector3d() << 1e-5, 1e-5, 1e-5).finished()
Continuous measurement noise covariance.
-
inline virtual std::string to_string()
-
template<class classType, int _Order>
class ButterworthFilter - #include <butterworth_filter.hpp>
General filter template
-
template<typename _Scalar, int _Rows, int _Order>
class ButterworthFilter<Eigen::Matrix<_Scalar, _Rows, 1, Eigen::ColMajor, _Rows, 1>, _Order> - #include <butterworth_filter.hpp>
Specialization to an Eigen::Vector. This Filter class implements a butterworth low pass filter able to filter a vector of measurements. Only Eigen::Vectors or Eigen::Matrices with column dimension 1 are valid. Usage example: typedef Filter<Eigen::Matrix<double,6,1> > FilterType; INSTANTIATE FilterType myfilter; INITIALIZE myfilter.initialize(initial_state, filter_order, cuttoff_frequency); UPDATE myfilter.update(measurement); RETRIEVE EST myfilter.getData(estimate);
Public Types
Public Functions
-
ButterworthFilter()
-
~ButterworthFilter()
-
void initialize(const VecToFilter ¤t_state, double cutoff_frequency)
Function to initialize several parameters of the filter
- Parameters:
current_state – [in] initial state of the system of type VecToFilter
filter_order – [in] order of the butterworth filter (integer >= 1)
cutoff_frequency – [in] cuttoff frequency for the filter as percentage of the nyquist frequency. For example, if sampling frequency is 200Hz; then the Nyquist frequency is half of the sampling frequency, namely 100Hz. cut_off frequency is a double element of [0-1], such that 0 corresponds to 0*Nyquist frequency and 1 corresponds to a cutoff_frequency equal to the Nyquist frequency.
-
void update(const VecToFilter &new_measurement)
Function to update the filtered state based on the new raw measurement
- Parameters:
new_measurement – [in] new raw measurement of type VecToFilter
-
void getData(VecToFilter ¤t_state)
Function to ask for the filtered estimate
- Parameters:
current_state – [out] filtered estimate of state of type VecToFilter
-
void getData(Eigen::Ref<ButterworthFilter::VecToFilter> current_state)
Private Functions
-
bool compute_filter_coefficients()
Function to compute the coefficients of a Butterworth filter without reading them from a table. It only needs to be done once at initialization. return true if successfull computing filter coefficients
-
void CT_transform(const std::vector<std::complex<double>> &Czeros, const std::vector<std::complex<double>> &Cpoles, double Cgain, double omega, bool flag, std::vector<std::complex<double>> &CTzeros, std::vector<std::complex<double>> &CTpoles, double &CTgain)
Auxiliar function to compute the coefficients of a Butterworth filter.
-
void DT_transform(const std::vector<std::complex<double>> &CTzeros, const std::vector<std::complex<double>> &CTpoles, double CTgain, double T, std::vector<std::complex<double>> &DTzeros, std::vector<std::complex<double>> &DTpoles, double &DTgain)
Auxiliar function to compute the coefficients of a Butterworth filter.
-
void poly_coeffs(const std::vector<std::complex<double>> &roots, Eigen::Matrix<double, _Order + 1, 1> &coeffs)
Auxiliar function to compute the coefficients of a Butterworth filter.
Private Members
-
Eigen::Matrix<double, _Order + 1, 1> zeros_coeffs_vec_
storage of butterworth filter coefficients
-
Eigen::Matrix<double, _Order + 1, 1> poles_coeffs_vec_
-
bool initialized_filter_
logic variable
-
double cutoff_
order for the butterworth filter (Should be >=1)
cutoff frequency for the butterworth filter ([0-1] percentage of the nyquist frequency)
-
ButterworthFilter()
-
class DataCollector
- #include <data_collector.hpp>
Subclassed by mim_estimation::io_tools::NonRtDataCollector
Public Functions
-
inline DataCollector()
-
inline virtual ~DataCollector()
-
virtual void addVariable(const double *data, const std::string &name, const std::string &units) = 0
virtual functions to add variables to data collection for different types
-
virtual void addVariable(const float *data, const std::string &name, const std::string &units) = 0
-
virtual void addVariable(const int *data, const std::string &name, const std::string &units) = 0
-
virtual void updateDataCollection() = 0
virtual function to update the collection with the recently added variables
-
virtual void stopDataCollection() = 0
-
virtual void startDataCollection() = 0
-
virtual bool isDataCollectionDone() = 0
virtual function to check whether data collection has completed:
-
void addVector(const Eigen::Ref<const Eigen::VectorXd> &data, const std::vector<std::string> &name, const std::vector<std::string> &units)
helper functions to unroll eigen vectors into simpler types that can be handled by the addVariable functions
arbitrary Eigen Vectors
-
void addVector(const Eigen::Ref<const Eigen::VectorXd> &data, const std::string &name, const std::vector<std::string> &extension, const std::vector<std::string> &units)
extension contains the list of strings to be appended to name for each elem of data
-
void addVector(const Eigen::Ref<const Eigen::VectorXd> &data, const std::string &name, const std::string &unit)
will just add 0,1,2..etc as extension to name
-
void addVector3d(const Eigen::Ref<const Eigen::Vector3d> &data, const std::string &name, const std::string &units)
the actual recorded names will be name_x, name_y, name_z
-
void addVector3d(const Eigen::Ref<const Eigen::Vector3d> &data, const std::string &name, const std::string &units, const std::string &extension)
the actual recorded names will be name_x, name_y, name_z plus extension
-
void addQuaternion(const Eigen::Ref<const Eigen::Vector4d> &data, const std::string &name)
the actual recorded names will be name_q0, name_q1, name_q2, name_q3 with units “-”
-
void addQuaternion(const Eigen::Quaterniond &data, const std::string &name)
the actual recorded names will be name_q0, name_q1, name_q2, name_q3 with units “-”
-
void addVector6d(const Eigen::Ref<const Eigen::Matrix<double, 6, 1>> &data, const std::string &name, const std::string &units)
the actual recorded names will have extension x,y,z,a,b,g
-
void addMatrix(const Eigen::Ref<const Eigen::MatrixXd> &data, const std::string &name, const std::string &unit)
arbitrary Eigen matrices (will just add matrix indes as extension to name, eg 11, 12, 21, 22
-
inline DataCollector()
-
class DataReader
- #include <data_reader.hpp>
Public Functions
-
inline DataReader()
-
inline ~DataReader()
-
void read(const std::string &fname)
read, reads a clmcplot file and fills the internal data structure.
- Parameters:
fname – name of the d-file to read.
-
int getIndex(const std::string &stream_name)
findIndex, find the column index corresponding to the field name.
- Parameters:
name – name of the field.
- Returns:
the column index corresponding to the field name.
-
void getIndexes(const std::vector<std::string> &stream_names, std::vector<int> &indexes)
getIndexes:, find stream column indexes corresponding to the names.
- Parameters:
names – list of the stream name.
indexes – the output list of indexes.
-
void fillPose(int row, const std::vector<int> &indexes, Eigen::Vector3d &pose, Eigen::Quaterniond &orientation)
fillPose, fill an existing pose object with the data.
- Parameters:
row – row index homogenous to time/sampling_period.
indexes – the indexes of the data streams to copy in order: [x, y, z, qw, qx, qy, qz].
pose – the object to fill.
-
void fillVector(int row, const std::vector<int> &indexes, Eigen::Ref<Eigen::VectorXd> vec)
fillVector, fill an existing vector from the data
- Parameters:
row – row index homogenous to time/sampling_period.
indexes – the indexes of the data streams to copy.
vec – the vector with the correct dimension that is filled
-
inline int getNbRows()
getNbRows, get the number of rows equivalent to the number of time step saved in the d-file
- Returns:
the number of time step saved
-
inline double getValue(int row, int index)
getValue, get the value of a specific stream at a specific time
- Parameters:
row – row index homogenous to time/sampling_period.
index – the index of the data streams to copy from.
- Returns:
the value
-
inline double getFrequency()
getFrequence, get the getFrequence of the read data
- Returns:
the frequence
Private Members
-
Eigen::MatrixXd data_
-
std::vector<std::string> var_names_
-
std::vector<std::string> units_
-
int nb_rows_
-
int nb_cols_
-
int buffer_size_
-
double frequency_
-
inline DataReader()
-
template<class S, class M>
class EKF - #include <ekf.hpp>
This class implements an extended Kalman Filter (EKF).
This class implements a templated Extended Kalman Filter that receives a State class “S” and a measurement class “M”. Both templated class must have this following operator: -, +, =, <<. This operator must be eigen compatible. To achieve this in a compact way I strongly suggest inheriting directly from the class Eigen::Vector<N> (see Eigen documentation https://eigen.tuxfamily.org/dox/TopicCustomizing_InheritingMatrix.html).
The main sources of reading comes from
[1] “S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, 2000” (Chapter 3)
[2] “http://wolfweb.unr.edu/~fadali/EE782/NumEvalQphi.pdf”
[3] “https://en.wikipedia.org/wiki/Extended_Kalman_filter”
The notation used in this documentation is the one from “http://wolfweb.unr.edu/~fadali/EE782/NumEvalQphi.pdf”.
\[\begin{split}\begin{align} x_t = g(u_t, x_{t-1}) + \epsilon_t \\ z_t = h(x_t) + \delta_t \end{align}\end{split}\]With \( x_t \) the system state, \( u_t \) the system control, \( g \) the process evolution, \( \epsilon_t \approx N(0, R_t) \) the process Gaussian noise, \( h \) the measurement evolution and \( \delta_t \approx N(0, Q_t) \) the measurement Gaussian noise. The first equation depicts the “process” in the code. The second equation represents the “measurement” in the code.Using a taylor expansion of the previous equation we get:
\[\begin{split}\begin{align} x_t = g(u_t, \mu_{t-1}) + G_t \; * \; (x_{t-1} - \mu_{t-1}) + \epsilon_t \\ z_t = h(\mu_t) + H_t \; * \; (x_{t} - \mu_{t}) + \delta_t \end{align}\end{split}\]With \( \mu_{t} \) the average of the estimated state of covariance \( \Sigma_t \). The equation of the EKF routine are defined with the “update_filter” function.The mapping between the variable names and this piece of documentation is done next to each variable.
Public Functions
-
EKF(bool numerical_jac, bool is_discrete, double dt, unsigned lin_order = 2)
EKF, constructor of the class.
- Parameters:
numerical_jac – do we compute the Jacobians analytically or not?
is_discrete – is the process discrete?
dt – the sampling period of the EKF.
-
inline ~EKF()
Default destructor.
-
void updateFilter(bool update_on)
updateFilter: compute a pass of the extended Kalman filter
From here on we only have access to \( \mu_{t-1} \) and \( \Sigma_{t-1} \) the previous estimated state along time. First of all we need to check if the system is a discrete one (see constructor). If the system is continuous we need to build a discrete approximation of it. In order to do so we use the Van Loan’s method (see [2] slide 15).
1/ Compute the dynamic matrix of the continuous process \( M \)
\[\begin{align} M = \left[ \left. \frac{-G_t}{0} \right| \frac{E_t R_t E_t^T}{G_t^T} \right] \end{align}\]With \( E_t \) being the jacobian of the noise. In [2], \( E_t \) is also considered as the control jacobian in a way.2/ Obtain the matrix M exponential
\[\begin{align} e^{M \Delta t} = \left[ \left. \frac{ e^{-G_t \Delta t} }{0} \right| \frac{ e^{-G_t \Delta t} F_{t, disc} }{ e^{G_t^T \Delta t} } \right] \end{align}\]3/ Transpose the lower right corner to compute the discretized process noise covariance.
\[\begin{align} R_{t, disc} = e^{G_t \Delta t} = (e^{G_t^T \Delta t})^T \end{align}\]4/ Compute the discretized process jacobian as follow:
\[\begin{align} F_{t, disc} = R_{t, disc} \;\;\; e^{M \Delta t}[\text{upper right corner}] \end{align}\]In the following we will discard the \( {disc} \) subscript in the expression of the process Jacobian and noise covariance for sake of clarity. We assume that the system is either discrete or already discretized.
When the system has been discretized (or is discrete) we compute the EKF with the following procedure. First we need to predict what is supposed to be the current estimated state \( \tilde{\mu}_{t} \) and its Covariance \( \tilde{\Sigma}_{t} \) according to the model and the current control:
\[\begin{split}\begin{align} \tilde{\mu}_{t} &= g(u_t, \mu_{t-1}) \\ \tilde{\Sigma}_{t} &= G_t \Sigma_{t-1} G_t^T + R_t \end{align}\end{split}\]The second step consist in introducing the actual measurement when one occur.\[\begin{split}\begin{align} K_{t} &= \tilde{\Sigma}_{t} H_t^T (H_t \tilde{\Sigma}_t H_t^T + Q_t)^{-1} \\ \mu_{t} &= \tilde{\mu}_{t} + K_t (z_t - h(\tilde{\mu}_t)) \\ \Sigma_{t} &= (I - K_t H_t) \tilde{\Sigma}_{t} \end{align}\end{split}\]- Parameters:
update_on – is the measurement new?
-
virtual Eigen::Matrix<double, N, 1> getFilterState(void) = 0
getFilterState
- Returns:
the current state estimate \( \mu_{t} \)
-
void printDebug(void)
printDebug, print all the protected method of the class for debugging purposes
Public Static Attributes
-
static const int N = S::state_dim
State dimension
-
static const int P = S::noise_dim
Noise dimension
-
static const int K = M::meas_dim
Measurement dimension
Protected Functions
-
virtual Eigen::Matrix<double, N, 1> processModel(S &s) = 0
processModel, a model of the continuous/discrete state dynamics \( g(u_t, x_{t-1}) \)
- Parameters:
s – \( [x_{t-1}^T \;\; u_t^T]^T \)
- Returns:
the predicted state (Max: should not return anything and update state_pre_?)
-
virtual void formProcessJacobian(void) = 0
formProcessJacobian, compute the Jacobian of the process \( G_t \)
-
virtual void formProcessNoise(void) = 0
formProcessNoise, compute the covariance of the process noise \( R_t \)
-
virtual void formNoiseJacobian(void) = 0
formNoiseJacobian, compute the Jacobian of the process noise \( E_t \)
-
virtual Eigen::Matrix<double, K, 1> measModel(S &s) = 0
measModel, a model of the measurement dynamics \( h(x_t) \)
- Parameters:
s – a state \( x_t \)
- Returns:
the predicted measurement (Max: should not return anything and update meas_pred_?)
-
virtual void formMeasJacobian(void) = 0
formMeasJacobian, compute the Jacobian of the measurement \( H_t \)
-
virtual void formMeasNoise(void) = 0
formMeasJacobian, compute the measure covariance \( Q_t \)
-
virtual void formActualMeas(void) = 0
formMeasJacobian, compute the measurement from sensors \( z_t \)
-
void computeJacobians(Eigen::MatrixXd &G_t, Eigen::MatrixXd &H_t, double ds)
computeJacobians, compute the finite differentiation
- Parameters:
G_t – [inout] the process jacobian to compute
H_t – [inout] the measurement jacobian
ds – [inout] the finite differentiation delta \( \frac{f(x+ds) - f(x-ds)}{2ds} \)
-
bool check_jacobians(bool evaluate)
check_the_jacobians, this function computes the jacobian from the discrete model and from the continuous jacobian discretized and compare them
- Parameters:
evaluate – [in] true, the function is computing the check/false it does nothing
- Returns:
a boolean that says if everything is alright. for Van Loan discretization, \( M \)
Protected Attributes
-
S state_pre_
Predicted state ( \( \tilde{\mu} \), \( \tilde{\Sigma} \))
-
S state_post_
State of the filter. One variable is used for the previous ( \( \mu_{t-1} \), \( \Sigma_{t-1} \)) and current state ( \( \mu_{t} \), \( \Sigma_{t} \))
-
M meas_actual_
Current measurement ( \( z_{t} \))
-
M meas_pred_
Predicted measurement ( \( h(\tilde{\mu}_t)\) )
-
Eigen::MatrixXd VL_mat_
for Van Loan discretization, \( e^{M dt} \)
-
Eigen::MatrixXd exp_VL_mat_
discretized/discrete process Jacobian, \( G_{t,disc}/G_t \)
-
Eigen::MatrixXd proc_jac_disc_
user input process Jacobian, \( G_t \)
-
Eigen::MatrixXd proc_jac_
Jacobian of the process noise, \( E_t \)
-
Eigen::MatrixXd noise_jac_
Jacobian of the measurement, \( H_t \)
-
Eigen::MatrixXd meas_jac_
user input covariance of the process noise \( R_t \)
-
Eigen::MatrixXd proc_noise_
discretized/discrete covariance of the process noise \( R_{t,disc}/R_t \)
-
Eigen::MatrixXd proc_noise_disc_
user input covariance of the measure noise \( Q_t \)
-
Eigen::MatrixXd meas_noise_
covariance of the process noise \( Q_t \) assuming a discrete measurement
-
Eigen::MatrixXd meas_noise_disc_
Kalman filter gain matrix \( K_t \)
-
Eigen::MatrixXd gain_mat_
LDLT decomposition to invert some matrix
-
Eigen::LDLT<Eigen::MatrixXd> ldlt
Do we compute the Jacobian numerically or analytically?
-
bool numerical_jac_
Is the process discrete?
-
bool is_discrete_
sampling period
-
double dt_
order of the process dynamic linearization
-
unsigned lin_order_
-
class EndEffectorForceEstimator
- #include <end_effector_force_estimator.hpp>
Public Types
-
typedef std::map<std::string, pinocchio::FrameIndex> EndEffectorIdMap
-
typedef std::map<pinocchio::FrameIndex, MatrixX3, std::less<pinocchio::FrameIndex>, Eigen::aligned_allocator<std::pair<const pinocchio::FrameIndex, MatrixX3>>> MatrixX3Map
-
typedef std::map<pinocchio::FrameIndex, pinocchio::Data::Matrix6x, std::less<pinocchio::FrameIndex>, Eigen::aligned_allocator<std::pair<const pinocchio::FrameIndex, pinocchio::Data::Matrix6x>>> Matrix6xMap
-
typedef std::map<pinocchio::FrameIndex, Eigen::Matrix<double, 6, 1>, std::less<pinocchio::FrameIndex>, Eigen::aligned_allocator<std::pair<const pinocchio::FrameIndex, Eigen::Matrix<double, 6, 1>>>> EndEffectorForceMap
Public Functions
-
EndEffectorForceEstimator()
Construct a new EndEffectorForceEstimator object.
No memory allocation,
See also
initialize. Use the default constructor for eigen and pinocchio objects.
-
~EndEffectorForceEstimator()
Destroy the EndEffectorForceEstimator object.
-
void initialize(const std::string &urdf_path, const std::vector<std::string> &frame_name = std::vector<std::string>())
-
void add_contact_frame(const std::string &frame_name)
-
void add_contact_frame(const std::vector<std::string> &frame_names)
-
void run(const Eigen::VectorXd &joint_positions, const Eigen::VectorXd &joint_torques)
-
const Eigen::Matrix<double, 6, 1> &get_force(const std::string &frame_name)
-
inline std::string to_string()
Public Members
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW typedef Eigen::Matrix< double, Eigen::Dynamic, 3 > MatrixX3
Private Members
-
Matrix6xMap contact_jacobians_
Contact Jacobians associated to a robot frame.
-
MatrixX3Map contact_jacobians_transpose_
Transpose of the contact Jacobians associated to a robot frame.
-
EndEffectorForceMap end_effector_forces_
Forces applied by the environment at the end-effector [N].
-
EndEffectorIdMap end_effector_id_map_
Map from model frame name to frame id.
-
pinocchio::Model robot_model_
Rigid body model of the robot, constructed from a urdf file.
-
pinocchio::Data robot_data_
Cache of the algorithm performed on the robot model.
-
Eigen::VectorXd q_
Internal robot configuration to perform the rigid body algorithms.
-
Eigen::ColPivHouseholderQR<MatrixX3> solver_
Linear solver for the equation $f A x = B $f.
-
int nb_joint_
Number of joint Dof.
-
typedef std::map<std::string, pinocchio::FrameIndex> EndEffectorIdMap
-
class EstimatorTests : public Test
The EstimatorTests class: test suit template for seting up the unit tests for the IMU Vicon base state estimator.
In SetUp, for test, we create all the configuration file paths In TearDown, we do nothing
Protected Functions
-
inline void SetUp()
-
inline void TearDown()
Protected Attributes
-
std::string yaml_file_
-
std::string d_file_
-
inline void SetUp()
-
class EstimatorViconImuTest
- #include <ekf_vicon_imu_simple.hpp>
Public Functions
-
inline EstimatorViconImuTest(std::string yaml_file, std::string d_file)
This class tests the mim_estimation based on IMU and Vicon measurement.
-
inline void run()
run, simple method that execute the estimation of the base position from motion capture and IMU data saved from SL
-
inline void dump(std::string file_name)
-
inline void get_data_from_file(const int row, Eigen::Vector3d &gyroscope, Eigen::Vector3d &accelerometer, Eigen::Matrix4d &vicon_base_pose, Eigen::Quaterniond &input_vicon_base_quat, bool &vicon_is_new_frame)
get_data_from_file
- Parameters:
row – row index homogenous to time/sampling_period.
gyroscope – output imu data copied from the data set
accelerometer – output imu data copied from the data set
unfiltered_joint_data – joint position copied from the data set
filtered_joint_data – filtered joint position copied from the data set
vicon_base_pose – position of the based measured form the Vicon system copied from the data set
vicon_is_new_frame – True is the Vicon data if actually a new one.
-
inline void subscribe_to_data_collector()
subscribe_to_data_collector, collect the address of all variables to save
-
inline void get_data_indexes()
get_data_indexes In order to parse the SL data file one need the indexes associated to the data.
This method computes the different names and indexes.
-
inline void display_one_statistics(double avg, double min, double max, std::string name)
-
inline void display_all_statistics()
-
inline void compute_all_statistics()
-
inline void compute_one_statistics(Eigen::Ref<Eigen::MatrixXd> mat, double &avg, double &min, double &max)
Public Members
-
double avg_err_base_pose
-
double avg_err_base_pose_x
-
double avg_err_base_pose_y
-
double avg_err_base_pose_z
-
double max_err_base_pose
-
double max_err_base_pose_x
-
double max_err_base_pose_y
-
double max_err_base_pose_z
-
double min_err_base_pose
-
double min_err_base_pose_x
-
double min_err_base_pose_y
-
double min_err_base_pose_z
-
double avg_err_base_quat_x
-
double avg_err_base_quat_y
-
double avg_err_base_quat_z
-
double max_err_base_quat_x
-
double max_err_base_quat_y
-
double max_err_base_quat_z
-
double min_err_base_quat_x
-
double min_err_base_quat_y
-
double min_err_base_quat_z
Private Members
-
YAML::Node config_
-
YAML::Node config_est_
-
double update_frequency_
-
io_tools::DataReader data_reader_
-
io_tools::NonRtDataCollector data_collector_
-
double time_
-
std::vector<int> gyroscope_ids_
-
std::vector<int> accelerometer_ids_
-
std::vector<int> vicon_base_pose_ids_
-
int vicon_is_new_frame_id_
-
Eigen::Vector3d input_gyroscope_
-
Eigen::Vector3d input_accelerometer_
-
Eigen::Matrix4d input_vicon_base_pose_
-
Eigen::Quaterniond input_vicon_base_quat_
-
bool input_vicon_is_new_frame_
-
Eigen::Vector3d output_imu_position_
-
Eigen::Quaterniond output_imu_orientation_
-
Eigen::Vector3d output_imu_linear_velocity_
-
Eigen::Vector3d output_imu_angular_velocty_
-
Eigen::Vector3d output_accel_bias_
-
Eigen::Vector3d output_gyro_bias_
-
Eigen::Vector3d output_base_position_
-
Eigen::Quaterniond output_base_orientation_
-
Eigen::Vector3d output_base_linear_velocity_
-
Eigen::Vector3d output_base_angular_velocity_
-
Eigen::MatrixXd error_base_pose_
-
Eigen::MatrixXd error_base_quat_
-
std::unique_ptr<mim_estimation::EkfViconImu> vicon_bse_
-
inline EstimatorViconImuTest(std::string yaml_file, std::string d_file)
-
class NonRtDataCollector : public mim_estimation::io_tools::DataCollector
- #include <non_rt_data_collector.hpp>
Public Functions
-
inline NonRtDataCollector()
-
inline virtual ~NonRtDataCollector()
-
virtual void addVariable(const double *data, const std::string &name, const std::string &units)
virtual functions to add variables to data collection for different types
-
virtual void addVariable(const float *data, const std::string &name, const std::string &units)
-
virtual void addVariable(const int *data, const std::string &name, const std::string &units)
-
virtual void addVariable(const bool *data, const std::string &name, const std::string &units)
-
virtual void updateDataCollection()
virtual function to update the collection with the recently added variables
-
virtual void stopDataCollection()
-
virtual void startDataCollection()
-
virtual bool isDataCollectionDone()
virtual function to check whether data collection has completed:
-
float reverseFloat(const float inFloat)
convertion big endian and little endian
-
void dump(std::string path)
dump the data in SL format the
Private Members
-
std::deque<std::deque<double>> double_data_
-
std::deque<std::string> double_names_
-
std::deque<std::string> double_units_
-
std::deque<const double*> double_ptr_
-
std::deque<std::deque<float>> float_data_
-
std::deque<std::string> float_names_
-
std::deque<std::string> float_units_
-
std::deque<const float*> float_ptr_
-
std::deque<std::deque<int>> int_data_
-
std::deque<std::string> int_names_
-
std::deque<std::string> int_units_
-
std::deque<const int*> int_ptr_
-
std::deque<std::deque<bool>> bool_data_
-
std::deque<std::string> bool_names_
-
std::deque<std::string> bool_units_
-
std::deque<const bool*> bool_ptr_
-
bool running_
-
inline NonRtDataCollector()
-
struct RobotStateEstimation
- #include <robot_state_estimation.hpp>
Public Types
-
typedef Eigen::Matrix<double, 6, 1> EigenVector6d
-
typedef mim_estimation::RobotPosture::EigenVectorNDofsd EigenVectorNDofsd
-
typedef standard_filters::ButterworthFilter<EigenVectorNDofsd, 2> JointDOFFilter
-
typedef standard_filters::ButterworthFilter<EigenVector6d, 2> WrenchFilter
-
typedef std::array<mim_estimation::ContactDescritpion, Robot::n_endeffs_> ContactDescriptionArray
-
typedef std::unique_ptr<mim_estimation::JointPositionSensors> JointPositionSensorPtr
-
typedef std::unique_ptr<mim_estimation::BaseStateSensor> BaseStateSensorPtr
-
typedef std::unique_ptr<mim_estimation::IMU> IMUPtr
-
typedef std::unique_ptr<mim_estimation::FTSensor> FTSensorPtr
-
typedef std::array<FTSensorPtr, Robot::n_endeffs_> FTSensorPtrArray
-
typedef std::unique_ptr<mim_estimation::Kinematics> KinematicsPtr
-
typedef std::shared_ptr<VisualizationToolsInterface> VisToolsPtr
Public Functions
-
RobotStateEstimation(YAML::Node n, std::unique_ptr<mim_estimation::RobotProperties> robot_prop, JointPositionSensorPtr joint_sensors, BaseStateSensorPtr base_state_sensor, FTSensorPtrArray wrench_sensors, IMUPtr imu_sensors, KinematicsPtr filtered_kinematics, KinematicsPtr unfiltered_kinematics, VisToolsPtr vis_tools_interface)
-
RobotStateEstimation(const RobotStateEstimation&) = delete
-
RobotStateEstimation(RobotStateEstimation&&) = delete
-
inline virtual ~RobotStateEstimation()
-
void initialize(const mim_estimation::ContactDescritpion (&contact_description)[Robot::n_endeffs_])
-
void update()
-
void computeFootCoPsOnFloor()
-
inline Eigen::Vector3d getFootContactPointProjected(int endeff_id)
-
inline bool isSimulated(void)
-
void subscribe_to_data_collector(data_collection::DataCollector &data_collector, std::string name)
Public Members
-
std::unique_ptr<mim_estimation::RobotProperties> robot_prop_
-
JointPositionSensorPtr unfiltered_joint_position_sensor_
-
BaseStateSensorPtr simulated_base_state_
-
KinematicsPtr unfiltered_forward_kinematics_
-
IMUPtr unfiltered_imu_
-
FTSensorPtrArray unfiltered_wrench_sensors_
-
int joint_sensors_filter_cutoff_
-
int wrench_filter_cutoff_
-
JointDOFFilter position_filter_
-
JointDOFFilter velocity_filter_
-
std::array<WrenchFilter, Robot::n_endeffs_> wrench_filters_
-
BaseEstEKF base_state_estimator_
-
std::shared_ptr<VisualizationToolsInterface> vis_tools_interface_
-
double force_threshold_for_contact_
-
mim_estimation::RobotPosture filtered_posture_
-
mim_estimation::RobotVelocity filtered_velocity_
-
std::array<mim_estimation::FTSensorData, Robot::n_endeffs_> filtered_wrench_
-
std::array<mim_estimation::FTSensorData, Robot::n_endeffs_> endeff_wrench_
-
std::vector<Eigen::Vector3d> filt_foot_cops_
-
std::vector<Eigen::Vector3d> filt_foot_cops_rgb_
-
std::vector<Eigen::Vector3d> filt_contact_points_
-
Eigen::Vector3d filt_overall_cop_
-
Eigen::Matrix4d floor_tf_
-
mim_estimation::ContactDescritpion contacts_[Robot::n_endeffs_]
-
KinematicsPtr filtered_kinematics_
-
bool use_vicon_base_
Private Functions
-
void update_base_estimation_ekf()
-
void update_vicon_base_state_ekf()
-
virtual bool update_opengl(const mim_estimation::RobotPosture &posture) = 0
-
typedef Eigen::Matrix<double, 6, 1> EigenVector6d
-
class RobotStateEstimator
- #include <robot_state_estimator.hpp>
This class has for purpose to estimate the state of the robot in the current environment.
It really on different classes implemented in this package and provide a uniforme way to interact with them.
For example there is an end-effector force estimation class that can be used for contact detection needed by an EKF. This class creates this pipeline in a transparent way for the user. The user simply need to pick which scientific method are to be used among the available ones.
Public Types
-
typedef std::map<std::string, Eigen::Vector3d, std::less<std::string>, Eigen::aligned_allocator<std::pair<const std::string, Eigen::Vector3d>>> ForceInWorldMap
Public Functions
-
RobotStateEstimator()
Construct a new Base State Estimator object.
-
~RobotStateEstimator()
Destroy by default the Base State Estimator object.
-
void initialize(const RobotStateEstimatorSettings &settings)
-
void set_initial_state(Eigen::Ref<const Eigen::VectorXd> initial_robot_configuration, Eigen::Ref<const Eigen::VectorXd> initial_robot_velocity)
-
void run(const std::vector<bool> &contact_schedule, Eigen::Ref<const Eigen::Vector3d> imu_accelerometer, Eigen::Ref<const Eigen::Vector3d> imu_gyroscope, Eigen::Ref<const Eigen::VectorXd> joint_position, Eigen::Ref<const Eigen::VectorXd> joint_velocity)
Estimate the robot base velocity and postion assuming the contact schedule is known.
- Parameters:
contact_schedule –
imu_accelerometer –
imu_gyroscope –
joint_position –
joint_velocity –
joint_torque –
-
void run(Eigen::Ref<const Eigen::Vector3d> imu_accelerometer, Eigen::Ref<const Eigen::Vector3d> imu_gyroscope, Eigen::Ref<const Eigen::VectorXd> joint_position, Eigen::Ref<const Eigen::VectorXd> joint_velocity, Eigen::Ref<const Eigen::VectorXd> joint_torque)
Estimate the robot base velocity and postion and the contact states.
- Parameters:
imu_accelerometer –
imu_gyroscope –
joint_position –
joint_velocity –
joint_torque –
-
void get_state(Eigen::Ref<Eigen::VectorXd> robot_configuration, Eigen::Ref<Eigen::VectorXd> robot_velocity)
-
const Eigen::VectorXd &get_robot_configuration() const
-
const Eigen::VectorXd &get_robot_velocity() const
-
const std::vector<bool> &get_detected_contact() const
-
const Eigen::Vector3d &get_force(const std::string &frame_name)
-
void set_settings(const RobotStateEstimatorSettings &settings)
-
const RobotStateEstimatorSettings &get_settings() const
Private Members
-
EndEffectorForceEstimator ee_force_estimator_¶
End-effector force estimator.
Estimate the forces in the base frame.
-
BaseEkfWithImuKin base_ekf_with_imu_kin_¶
EKF that estimating the localization of the base relative to it’s initial position.
-
RobotStateEstimatorSettings settings_¶
Settings of this class.
-
std::vector<bool> detected_contact_¶
Contact detection from force.
-
Eigen::VectorXd current_robot_configuration_¶
Current robot configuration.
-
Eigen::VectorXd current_robot_velocity_¶
Current robot velocity.
-
Eigen::Quaterniond rot_base_in_world_¶
Current base orientation in the estimated world frame.
-
ForceInWorldMap force_in_world_map_¶
Force in world frame.
-
typedef std::map<std::string, Eigen::Vector3d, std::less<std::string>, Eigen::aligned_allocator<std::pair<const std::string, Eigen::Vector3d>>> ForceInWorldMap
-
class RobotStateEstimator : public Entity
- #include <robot_state_estimator.hpp>
This class define a dynamic graph wrapper around the vicon client.
Public Functions
-
DYNAMIC_GRAPH_ENTITY_DECL()
-
RobotStateEstimator(const std::string &name)
Construct a new Vicon Client Entity object.
- Parameters:
name – Entity name.
-
~RobotStateEstimator()
Destroy the Vicon Client Entity object.
-
void initialize(const RobotStateEstimatorSettings &settings)
Connect to the vicon system and start a.
- Parameters:
host_name –
-
void set_initial_state(Eigen::Ref<const Eigen::VectorXd> initial_robot_configuration, Eigen::Ref<const Eigen::VectorXd> initial_robot_velocity)
Add a signal that contains the pose of the desired object.
Private Functions
-
int &signal_callback_one_iteration(int&, const int &time)¶
Signal callback for the one_iteration_sout_ signal.
-
dynamicgraph::Vector &signal_callback_robot_configuration(dynamicgraph::Vector &res, const int &time)¶
Signal callback for the robot_configuration_sout_ signal.
-
dynamicgraph::Vector &signal_callback_robot_velocity(dynamicgraph::Vector &res, const int &time)¶
Signal callback for the robot_velocity_sout_ signal.
-
dynamicgraph::Vector &signal_callback_base_posture(dynamicgraph::Vector &res, const int &time)¶
Signal callback for the base_posture_sout_ signal.
-
dynamicgraph::Vector &signal_callback_base_velocity_body(dynamicgraph::Vector &res, const int &time)¶
Signal callback for the base_velocity_body_sout_ signal.
-
dynamicgraph::Vector &signal_callback_detected_contact(dynamicgraph::Vector &res, const int &time)¶
Signal callback for the detected_contact_sout_ signal.
-
dynamicgraph::Vector &signal_callback_force(const std::string &frame_name, dynamicgraph::Vector &res, const int &time)¶
Signal callback for the robot_velocity_sout_ signal.
Private Members
-
SignalTrigger one_iteration_sout_¶
Create an output signal which computes the estimation.
All other signal depend one this one. This allow the computation to be ran only once per graph evaluation. And to compute the estimation early on to allow convergence of the algorithm during initialization.
-
SignalOut robot_configuration_sout_¶
Output signal carrying the robot configuration in generalized coordinates.
-
SignalOut robot_velocity_sout_¶
Output signal carrying the robot velocity in generalized coordinates.
-
SignalOut detected_contact_sout_¶
Output signal carrying the list of detected contact using doubles.
-
std::deque<std::unique_ptr<SignalOut>> force_sout_¶
Signals for the end-effector external force expressed in the world frame.
-
mim_estimation::RobotStateEstimator estimator_¶
State estimator wrapped by this entity.
-
DYNAMIC_GRAPH_ENTITY_DECL()
-
struct RobotStateEstimatorSettings : public mim_estimation::BaseEkfWithImuKinSettings
- #include <robot_state_estimator.hpp>
Public Functions
-
inline virtual std::string to_string()
Convert the current object in human readable string.
Public Members
-
std::string urdf_path
Path to th robot URDF file.
-
double force_threshold_up = 10
Threshold on the rising force norm.
-
double force_threshold_down = 5
Threshold on the decreasing force norm.
-
inline virtual std::string to_string()
-
class SimpleEKF : public mim_estimation::standard_filters::EKF<SimpleEKFState, SimpleEKFMeasure>
- #include <simple_1d_ekf.hpp>
Public Functions
-
inline SimpleEKF(double init_pos, double dt, bool is_discrete)
-
inline ~SimpleEKF()
-
inline void update(Eigen::Matrix<double, 1, 1> pos, bool new_measured_value)
-
inline Eigen::Matrix<double, N, 1> get_filter_state(void)
-
inline void subscribe_to_data_collector(mim_estimation::io_tools::DataCollector &data_collector)
Private Functions
-
inline Eigen::Matrix<double, N, 1> process_model(SimpleEKFState &s)
process_model
- \[\begin{align} \dot{pos} = (meas_vel - meas_vel_bias) \dot{bias} = 0.0 \end{align}\]
- Parameters:
s – current state
- Returns:
out: the predicted state
-
inline void form_process_jacobian(void)
form_process_jacobian
-
inline void form_process_noise(void)
-
inline void form_noise_jacobian(void)
-
inline Eigen::Matrix<double, K, 1> measurement_model(SimpleEKFState &s)
measurement_model
- Parameters:
s – current state
- Returns:
out: the predicted measurement
-
inline void form_measurement_jacobian(void)
-
inline void form_measurement_noise(void)
-
inline void form_actual_measurement(void)
Private Members
-
Eigen::Matrix<double, 1, 1> vel_
-
Eigen::Matrix<double, 1, 1> meas_pos_
-
Eigen::Matrix<double, 1, 1> meas_vel_
-
double q_proc_noise_
-
double q_meas_noise_
-
double init_var_
-
inline SimpleEKF(double init_pos, double dt, bool is_discrete)
-
class SimpleEKFMeasure : public Eigen::Matrix<double, 1, 1>
- #include <simple_1d_ekf.hpp>
Public Functions
-
inline SimpleEKFMeasure(void)
-
template<typename OtherDerived>
inline SimpleEKFMeasure(const Eigen::MatrixBase<OtherDerived> &other)
-
template<typename OtherDerived>
inline SimpleEKFMeasure &operator=(const Eigen::MatrixBase<OtherDerived> &other)
Public Members
-
Eigen::Ref<Eigen::Matrix<double, 1, 1>> meas_pos_
-
Eigen::Matrix<double, 1, 1> meas_cov
Public Static Attributes
-
static const int meas_dim = 1
-
inline SimpleEKFMeasure(void)
-
class SimpleEKFState : public Eigen::Matrix<double, 1, 1>
- #include <simple_1d_ekf.hpp>
Public Functions
-
inline SimpleEKFState(void)
-
template<typename OtherDerived>
inline SimpleEKFState(const Eigen::MatrixBase<OtherDerived> &other)
-
template<typename OtherDerived>
inline SimpleEKFState &operator=(const Eigen::MatrixBase<OtherDerived> &other)
-
inline Eigen::Matrix<double, 1, 1> getState()
Public Members
-
Eigen::Ref<Eigen::Matrix<double, 1, 1>> pos_
-
Eigen::Matrix<double, 1, 1> state_cov
Public Static Attributes
-
static const int state_dim = 1
-
static const int noise_dim = 1
-
inline SimpleEKFState(void)
-
struct SystemState
- #include <base_ekf_with_imu_kin.hpp>
System state data.
Public Members
-
Eigen::Vector3d position = Eigen::Vector3d::Zero()
Base/Imu position.
-
Eigen::Vector3d linear_velocity = Eigen::Vector3d::Zero()
Base/Imu linear velocity.
-
Eigen::Quaterniond attitude = Eigen::Quaterniond::Identity()
Base/Imu linear attitude.
-
Eigen::Vector3d bias_accelerometer = Eigen::Vector3d::Zero()
Accelerometer bias.
-
Eigen::Vector3d bias_gyroscope = Eigen::Vector3d::Zero()
Gyroscope bias.
Public Static Attributes
-
static const int state_dim = 15
State dimension.
-
static const int noise_dim = 12
Process noise dimension.
-
Eigen::Vector3d position = Eigen::Vector3d::Zero()
-
class TestEKF : public Test
Protected Functions
-
inline virtual void SetUp()
-
inline virtual void TearDown()
-
inline virtual void SetUp()
-
template<class S, class M>
class UKF - #include <ukf.hpp>
Public Functions
-
UKF(bool numerical_jac, bool is_discrete, bool update_on, double dt)
-
inline ~UKF()
-
virtual void initialize(void) = 0
-
inline virtual void updateControls(void)
-
void update(void)
-
virtual Eigen::Matrix<double, N, 1> get_filter_state(void) = 0
-
void print_debug(void)
Public Static Attributes
-
static const int N = S::state_dim
-
static const int P = S::noise_dim
-
static const int K = M::meas_dim
-
static const int L = 2 * N + 1
Protected Functions
-
virtual void form_process_jacobian(void) = 0
-
virtual void form_process_noise(void) = 0
-
virtual void form_noise_jacobian(void) = 0
-
virtual void form_measurement_noise(void) = 0
-
virtual void form_actual_measurement(void) = 0
Protected Attributes
-
S state_pre_
-
S state_post_
-
M meas_actual_
-
M meas_pred_
-
Eigen::MatrixXd proc_jac_
-
Eigen::MatrixXd proc_jac_disc_
-
Eigen::MatrixXd noise_jac_
-
Eigen::MatrixXd proc_noise_
-
Eigen::MatrixXd proc_noise_disc_
-
Eigen::MatrixXd meas_jac_
-
Eigen::MatrixXd meas_noise_
-
Eigen::MatrixXd meas_noise_disc_
-
Eigen::MatrixXd state_weights_
-
Eigen::MatrixXd cov_weights_
-
Eigen::MatrixXd spoints_mat_
-
Eigen::MatrixXd spoints_proc_
-
Eigen::MatrixXd spoints_meas_
-
Eigen::MatrixXd cross_cov_
-
Eigen::MatrixXd gain_mat_
-
Eigen::LDLT<Eigen::MatrixXd> ldlt
-
double alpha_
-
double beta_
-
double kappa_
-
double lambda_
-
bool numerical_jac_
-
bool is_discrete_
-
bool update_on_
-
double dt_
-
UKF(bool numerical_jac, bool is_discrete, bool update_on, double dt)
-
namespace boost
Functions
-
namespace python
-
namespace estimation
-
namespace example_tasks
-
namespace mim_estimation
Functions
-
boost::python::list get_measurement(BaseEkfWithImuKin *obj)
-
void bind_base_ekf_with_imu_kin()
-
void bind_end_effector_force_estimator()
-
void bind_robot_state_estimator()
-
BOOST_PYTHON_MODULE(mim_estimation_cpp)
-
void bind_robot_state_estimator_settings()
-
boost::python::list get_measurement(BaseEkfWithImuKin *obj)
-
namespace dynamic_graph
Typedefs
-
typedef dynamicgraph::SignalTimeDependent<int, int> SignalTrigger
Simple shortcut for code writing convenience.
-
typedef dynamicgraph::SignalTimeDependent<dynamicgraph::Vector, int> SignalOut
Simple shortcut for code writing convenience.
-
typedef dynamicgraph::SignalPtr<dynamicgraph::Vector, int> SignalIn
Simple shortcut for code writing convenience.
Functions
- DYNAMICGRAPH_FACTORY_ENTITY_PLUGIN (RobotStateEstimator, "RobotStateEstimator")
-
std::string make_signal_string(const bool &is_input_signal, const std::string &class_name, const std::string &object_name, const std::string &signal_type, const std::string &signal_name)
-
typedef dynamicgraph::SignalTimeDependent<int, int> SignalTrigger
-
namespace io_tools
-
namespace standard_filters
-
namespace test
- file demo_ekf_vicon_imu.cpp
- #include “mim_estimation/demos_and_tests/ekf_vicon_imu_simple.hpp”
Simple demo that runs the EkfViconImu filter using a d-file as data.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
Functions
-
int main(int argc, char **argv)
main, simple main that execute the estimation of the base position from motion capture and IMU data saved from SL
- Parameters:
argc – must be equal to 2
argv – contains the path to the data-file
- Returns:
0 by default
- file ekf.hpp
- #include <iostream>#include “Eigen/Eigen”#include “mim_estimation/standard_filters/ekf.hxx”
Implementation of the Extended Kalman Filter (EKF).
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- file ekf.hxx
- #include <fstream>#include “mim_estimation/standard_filters/ekf.hpp”
Implements the EKF templated class.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- file ekf_vicon_imu_simple.hpp
- #include <fstream>#include <string>#include “mim_estimation/ekf_vicon_imu.hpp”#include “mim_estimation/io_tools/data_reader.hpp”
Implements a testing class for the Vicon and IMU based estimator. It loads a yaml configuration file and a SL data file, estimate the state from these data and compare to the vicon trajectory.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- file robot_state_estimation.cpp
- #include <estimator/robot_state_estimation.h>#include <example_tasks/utils/robot_part_iterators.h>
Remark
…
- Author
Alexander Herzog
- Date
Oct 26, 2015
- file robot_state_estimation.hpp
- #include <array>#include <memory>#include <data_collection/data_collector.h>#include <mim_estimation/contact_helper.h>#include <mim_estimation/kinematics.h>#include <mim_estimation/robot_properties.h>#include <mim_estimation/robot_state_representation.h>#include <mim_estimation/sensors.h>#include <robot_properties/robot.h>#include <standard_filters/butterworth_filter.h>#include <yaml-cpp/yaml.h>#include “geometry_utils/Transformations.h”#include “hinvdyn_balance/ankle_ft_sensor.h”#include “base_state_estimators/BaseEstEKF.h”#include “visualization_tools/VisualizationToolsInterface.h”
- file simple_1d_ekf.hpp
- #include <Eigen/Core>#include “mim_estimation/standard_filters/ekf.hpp”
- file test_ekf_vicon_imu.cpp
- #include <gtest/gtest.h>#include “mim_estimation/demos_and_tests/ekf_vicon_imu_simple.hpp”
- License:
BSD 3-clause
See also
https://git-amd.tuebingen.mpg.de/amd-clmc/ci_example/wikis/catkin:-how-to-implement-unit-tests
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
Functions
-
TEST_F(EstimatorTests, test_estimator_vicon_imu_test)
- file test_extended_kalman_filter.cpp
- #include <gtest/gtest.h>#include <stdlib.h>#include <random>#include “mim_estimation/io_tools/data_reader.hpp”#include “simple_1d_ekf.hpp”
Functions
-
double generate_1d_noisy_sinus(std::default_random_engine noise_gen, std::normal_distribution<double> noise, double amplitude, double pulsation, double time)
generate_1d_noisy_sinus: for documentation purpose on the generated data for the unittest
- Parameters:
amplitude – {0, 0.5}
noise_gen – a random generator
noise – a gaussian noise
amplitude – sinus amplitude
pulsation – sinus pulsation
time – the current time in seconds
- Returns:
a noisy sinusoid
-
TEST_F(TestEKF, simple_1d_ekf_test)
This test evaluates a simple 1d ekf for debugging purpose.
-
double generate_1d_noisy_sinus(std::default_random_engine noise_gen, std::normal_distribution<double> noise, double amplitude, double pulsation, double time)
- file ukf.hpp
- #include <iostream>#include “Eigen/Eigen”#include “mim_estimation/standard_filters/ukf.hxx”
Implements the Unscented Kalman Filter (UKF).
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- Todo:
Explain here the math a little at least or add ref.
- file ukf.hxx
- #include “mim_estimation/standard_filters/ukf.hpp”
Implements the UKF templated class.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- file base_ekf_with_imu_kin.hpp
- #include <Eigen/StdVector>#include “pinocchio/multibody/data.hpp”#include “pinocchio/multibody/model.hpp”
Defines a class implementing a base state estimator using the imu and the kinematics information.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2021, New York University and Max Planck Gesellschaft
- file end_effector_force_estimator.hpp
- #include <Eigen/Eigen>#include “pinocchio/multibody/data.hpp”#include “pinocchio/multibody/model.hpp”
Computes the forces at the end-effector.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- file data_collector.hpp
- #include <Eigen/Eigen>#include <string>#include <vector>
Abstract interface DataCollector to collect data inside a specific library.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- file data_reader.hpp
- #include <Eigen/Eigen>
Parser to load SL file format (clmcplot) It loads the data and provide a usueful API for accessing the fields Implement some function to access the data from the SL d-file.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- file non_rt_data_collector.hpp
- #include <deque>#include <string>#include “mim_estimation/io_tools/data_collector.hpp”
Collecting data in a non real-time inside a specific library and dump it in the SL format.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- file robot_state_estimator.hpp
- #include <sstream>#include “mim_estimation/base_ekf_with_imu_kin.hpp”
Implement a base state estimator using different classes in this package.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2021, New York University and Max Planck Gesellschaft
- file robot_state_estimator.hpp
- #include <dynamic-graph/all-commands.h>#include <dynamic-graph/all-signals.h>#include <dynamic-graph/entity.h>#include <dynamic-graph/factory.h>#include <dynamic-graph/linear-algebra.h>#include <deque>#include “mim_estimation/robot_state_estimator.hpp”
- file butterworth_filter.hpp
- #include <Eigen/Dense>#include <iostream>#include <vector>
Implements the Butterworth filters. An Introduction to the math can be found here: https://en.wikipedia.org/wiki/Butterworth_filter.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- file butterworth_filter.hxx
- #include <cmath>#include <complex>#include <cstdio>#include <iomanip>#include <iostream>#include <stdexcept>#include <string>#include <vector>
Implements the ButterworthFilter temaplated class.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- file dg_python_module.cpp
- #include “dynamic-graph/python/module.hh”#include “dynamic-graph/python/signal.hh”#include “srcdg/robot_state_estimator.hpp”
Expose the Device and the periodic call to python.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
Typedefs
-
typedef bp::return_value_policy<bp::reference_existing_object> reference_existing_object
Functions
-
BOOST_PYTHON_MODULE(entities)
- file robot_state_estimator.cpp
- #include “robot_state_estimator.hpp”#include <iostream>#include “signal_utils.hpp”
- file robot_state_estimator.cpp
- #include “pinocchio/bindings/python/fwd.hpp”#include <boost/python.hpp>#include <boost/python/suite/indexing/vector_indexing_suite.hpp>#include “mim_estimation/robot_state_estimator.hpp”
Python bindings for the StepperHead class.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- file signal_utils.cpp
- #include “signal_utils.hpp”
This is the implementation for impedance controller between any two frames of the robot.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- file signal_utils.hpp
- #include <sstream>
Utilities for the creation of signals.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
Defines
-
crop_underscore(var_name)
-
define_input_signal(signal_var_name, signal_type)
-
define_output_signal(signal_var_name, signal_type, signal_dep, callback)
-
define_internal_output_signal(signal_var_name, signal_type, signal_dep, callback)
- file base_ekf_with_imu_kin.cpp
- #include “pinocchio/bindings/python/fwd.hpp”#include <boost/python.hpp>#include <boost/python/suite/indexing/vector_indexing_suite.hpp>#include “mim_estimation/base_ekf_with_imu_kin.hpp”
Python bindings for the StepperHead class.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- file end_effector_force_estimator.cpp
- #include “pinocchio/bindings/python/fwd.hpp”#include <eigenpy/eigenpy.hpp>#include <boost/python.hpp>#include <boost/python/suite/indexing/vector_indexing_suite.hpp>
Python bindings for the StepperHead class.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- file mim_estimation.cpp
- #include <boost/python.hpp>#include <boost/python/class.hpp>#include <eigenpy/eigenpy.hpp>
Python bindings for the mim_estimation package.
- License:
BSD 3-clause
- Copyright
Copyright (c) 2020, New York University and Max Planck Gesellschaft
- page todo
- Class mim_estimation::BaseEkfWithImuKin
explain here the math around the EKF
- File ukf.hpp
Explain here the math a little at least or add ref.
- page license
- File base_ekf_with_imu_kin.cpp
BSD 3-clause
- File base_ekf_with_imu_kin.hpp
BSD 3-clause
- File butterworth_filter.hpp
BSD 3-clause
- File butterworth_filter.hxx
BSD 3-clause
- File data_collector.hpp
BSD 3-clause
- File data_reader.hpp
BSD 3-clause
- File demo_ekf_vicon_imu.cpp
BSD 3-clause
- File dg_python_module.cpp
BSD 3-clause
- File ekf.hpp
BSD 3-clause
- File ekf.hxx
BSD 3-clause
- File ekf_vicon_imu_simple.hpp
BSD 3-clause
- File end_effector_force_estimator.cpp
BSD 3-clause
- File end_effector_force_estimator.hpp
BSD 3-clause
- File mim_estimation.cpp
BSD 3-clause
- File non_rt_data_collector.hpp
BSD 3-clause
- File robot_state_estimator.cpp
BSD 3-clause
- File robot_state_estimator.hpp
BSD 3-clause
- File signal_utils.cpp
BSD 3-clause
- File signal_utils.hpp
BSD 3-clause
- File test_ekf_vicon_imu.cpp
BSD 3-clause
- File ukf.hpp
BSD 3-clause
- File ukf.hxx
BSD 3-clause
- dir deprecated
- dir include
- dir include/mim_estimation/io_tools
- dir include/mim_estimation
- dir srcdg
- dir srcpy
- dir include/mim_estimation/standard_filters