momentumopt
momentumopt.kinoptpy.lqr_gain_manifold.CentroidalLqr Class Reference

Public Member Functions

def __init__ (self, dir)
 
def switching_dynamics (self)
 loops over active contacts to determine if control authority is available or not
 
def skew (self, v)
 converts vector v to skew symmetric matrix
 
def quaternion_to_rotation (self, q)
 converts quaternion to rotation matrix
 
def exp_quaternion (self, w)
 converts angular velocity to quaternion
 
def log_quaternion (self, q)
 lives on the tangent space of SO(3)
 
def quaternion_product (self, q1, q2)
 computes quaternion product of q1 x q2
 
def integrate_quaternion (self, q, w)
 updates quaternion with tangent vector w
 
def quaternion_difference (self, q1, q2)
 computes the tangent vector from q1 to q2 at Identity returns vecotr w s.t. More...
 
def integrate_veocity (self, v, f)
 
def integrate_angular_velocity (self, w, q, tau)
 
def compute_trajectory_from_controls (self, x, u)
 xu0 contains initial trajectory at x[0], and controls for the full horizon
 
def integrate_step (self, t, x, u)
 state vector x is given by x = [c, v, q, w] where c center of mass cartesian position v center of mass linear velocity q base orientation represented as a quaternion w base angular velocity
 
def increment_x (self, x, dx)
 perturbs x with dx
 
def diff_x (self, x1, x2)
 return the difference between x2 and x1 as x2 (-) x1 on the manifold
 
def dynamics_derivatives (self, t, x, u)
 computes df/dx and df/du using finite differentiation
 
def cost (self, t, x, u)
 a tracking cost for state and controls here we assume x0 to be the reference trajectory
 
def cost_derivatives (self, t, x, u)
 compute cx, cxx, cu, cuu, cxu using finite differences
 
def cost_dxdx (self, t, x, u)
 
def cost_dudu (self, t, x, u)
 for quadratic tracking cost, structure is trivial uncomment finite difference for different cost implementation
 
def cost_dxdu (self, t, x, u)
 structure is trivial for quadratic cost uncomment finite differences for any other structure
 
def compute_Q (self, V_next, Vx_next, Vxx_next, t, x, u)
 
def compute_value_function (self, t)
 
def compute_gains (self)
 performs a backward pass to compute the lqr gain for the reference trajectories
 

Public Attributes

 dir
 
 com_pos
 
 com_vel
 
 com_ori
 
 com_ang_vel
 
 cent_force
 
 cent_moments
 
 contact_plan
 
 eps
 
 dt
 
 mass
 
 base_mass
 
 inertia_com_frame
 
 inertia_com_frame_scaled
 
 weight
 
 N
 
 n
 
 m
 
 nx
 
 active_contacts
 
 xp
 
 u0
 
 x0
 
 Q
 
 R
 
 value
 
 value_dx
 
 value_dxdx
 
 Q0
 
 Qdx
 
 Qdu
 
 Qdxdx
 
 Qdudu
 
 Qdxdu
 
 kfb
 
 kff
 

Static Private Member Functions

def _smooth_inv (m)
 adds positive value to eigen values before inverting
 

Member Function Documentation

def momentumopt.kinoptpy.lqr_gain_manifold.CentroidalLqr.quaternion_difference (   self,
  q1,
  q2 
)

computes the tangent vector from q1 to q2 at Identity returns vecotr w s.t.

q2 = exp(.5 * w)*q1


The documentation for this class was generated from the following file: